• Title/Summary/Keyword: metal uptake

Search Result 261, Processing Time 0.032 seconds

Mobilization of Heavy Metals induced by Button Mushroom Compost in Sunflower

  • Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2017
  • This study focused on evaluating the phytoextraction of heavy metals (Co, Pb, and Zn) induced by bioaugmentation of button mushroom compost (BMC) in Helianthus annuus (sunflower). When the potential ability of BMC to solubilize heavy metals was assessed in a batch experiment, the inoculation with BMC could increase more the concentrations of water-soluble Co, Pb, and Cd by 35, 25, and 45% respectively, compared to those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in H. annuus was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to an increase in the growth of H. annuus by 27, 25, and 28% in Co-, Pb-, and Zn-contaminated soils, respectively. Moreover, enhanced accumulation of Co, Pb, and Zn in the shoot and root systems was observed in inoculated plants, where metal the translocation from root to the above-ground tissues was also found to be enhanced by the BMC. Evidently, these results suggest that the BMC could be effectively employed in enhancing the phytoextraction of Co, Pb, and Zn from contaminated soils.

Plasma Membrane Transporters for Lead and Cadmium

  • Bressler, Joseph P.;Olivi, Luisa;Kim, Yong-Bae;Bannon, Desmond;Ko, Hong-Sook;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Lead and cadmium are potent environmental toxicants that affect populations living in Europe. Americas, and Asia. Identifying transporters for lead and cadmium could potentially 1 help us better understand possible risk factors. The iron transporter, divalent metal transporter 1 (DMT1), mediates intestinal transport of cadmium, and lead in yeast and fobroblasts overexpressing DMT1. In human intestinal cells knocking down expression of DMT1 attenuated uptake of cadmium and iron but not lead. A possible explanation is the expression of a second transporter for lead in intestine. In astrocytes, however, DMT1 appears to transport lead in an extracellular buffer at pH value. At neutral pH, transport was not mediated by DMT1 but rather by a transporter that is stimulated by bicarbonate and inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid. The identity of this lead transporter will beverified by future study.

Dehydropolycondensation of Aminophenols under the Catalytic Action of Metallic Chelate Compounds (II) Effects of the Ligands, Structures of the Mixed Complexes, and Side Reactions (金屬킬레이트 化合物의 觸媒作用에 依한 Aminophenol 類의 酸化的 重縮合反應 (Ⅱ) Ligands 種의 效果, 混合錯物의 構造및 副反應)

  • Choi, Kyu-Suck
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.121-127
    • /
    • 1968
  • In the oligomerization of p-aminophenol under the catalytic action of the metallic complexes, the effects of the ligands are studied. When the initial velocity of $O_2$ uptake at pH 8 using Fe(Ⅲ) as the central metal and N-hydroxylethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), 1,2-cyclohexanediaminetetraacetic acid(CyDTA) as the ligands respectively are compared, the velocities are as the following order: HEDTA > EDTA > DTPA > CyDTA. Further when the effect of the ligands, nitrilotriacetic acid (NTA), HEDTA, EDTA, and DTPA, on the yields of oligomers are compared, the result shows as the following order: NTA > HEDTA > EDTA > DTPA. These are nearly reverse order of the stability constants of the complexes. In order to determine the composition of the mixed complexes at the initial step, the method of continuous variation is used, and it is found that the composition ratio of Fe-EDTA complex to monomer in the mixed complexes is one at pH 5-8 range. It is also found that at pH 9 or in the more alkaline range, side reactions occur to form water soluble dimer of quinone type and the catalytic action of the metallic complex markedly decreases on account of the hydrolysis of the central metal by the $OH^-$ ion.

  • PDF

Removal/Recovery of Heavy Metals Using Biopolymer (생물고분자를 이용한 중금속 제거/회수에 관한 연구)

  • 안대희;정윤철
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.336-340
    • /
    • 1993
  • Zoogloea ramigera 115, well known type of bacteria to produce slime in sewage plants, was selected for biopolymer production. The extracted biopolymer showed high uptake capacity of metals such as cadmium and zinc. Especially the fermentor broth itself showed high adsorption of metal and could be used a biosorbent without an additional separation process. Biopolymer was immobilized into beads of calcium alginate and used in a packed bed reactor for the purpose of valued metals recovery. The biopolymer showed high removal efficiencies of 80% or greater for Cu, Cd, Mn and Zn, and high stability in sorption-desorption-resorption experiments. The immobilized biopolymer systems were found to be comparable to other metal removal systems such as ion exchange resins and to be of potential industrial application value.

  • PDF

Use and Evaluation of Lignin as Ion Exchangers (이온교환체로서 리그닌의 이용과 평가)

  • Ads, Essam.N.;Nada, A.M.A.;El-Masry, A.M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Modified lignins were prepared. Soda and peroxy lignins were precipitated from black liquor produced from bagasse pulping with soda and peroxyacid pulping process. The precipitated lignins were hydrolyzed using 10% HCl. Different functional groups were also incorporated into lignin by carboxylation and phosphorylation reactions. Moreover crosslinking of these lignins were carried out using epichlorohydrin. Characterization of the modified lignins and lignins derivative were carried out using Infrared spectroscopy. Thermal analysis of these compounds were also carried out using TGA and DTA techniques. Efficiency of sorption of metal ions by the modified lignin was also investigated. It was found that, the peroxylignin and its derivatives show higher efficiency toward metal ions uptake than the soda lignin.

Utilization of Bamboo Leaves as a New Resource of Natural Green Colorants

  • Shin, Younsook;Cho, Arang;Yoo, Dong Il
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.247-252
    • /
    • 2012
  • The objective of this study was to find an appropriate method and process for protecting the green color in bamboo leaves and subsequent extraction of the green colorants, chlorophyll. Various inorganic salts including cupric sulfate, ferric sulfate, and zinc chloride were employed as green color protectors. Accordingly, the effects of metal salts and treatment conditions on color protection were investigated to find appropriate protector and conditions. And also, the efficacy of bamboo colorants as a natural green dye was evaluated through dyeing and colorfastness tests. Antimicrobial activity of dyed fabrics was measured by shake flask method in terms of bacterial reduction rate using Staphylococcus aureus(ATCC 6538). On the basis of experimental results for stabilizing bamboo leaves colorants, it was confirmed that Cu was the most appropriate metal type considering dye uptake, photostability and light fastness, and its optimum concentration was 0.025%. After the stabilization, the colorants were extracted efficiently at NaOH aqueous solution of 1.00%. It was concluded that bamboo leave has a high potentiality as new resources to produce a natural green dye with antimicrobial functionality.

Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov

  • Van, Phu Nguyen;Truong, Hai Thi Hong;Pham, Tuan Anh;Cong, Tuan Le;Le, Tien;Nguyen, Kim Cuc Thi
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.507-520
    • /
    • 2021
  • Papiliotrema huenov was previously reported to be highly tolerant of a range of extremely toxic heavy metals. This study aimed to identify the potential of P. huenov to remove manganese and copper from aqueous solution. Physical conditions which affect removal of Mn(II) and Cu(II) were determined. Optimal temperature for adsorption of both metal ions was 30 ℃, and optimal pH for maximum uptake of Mn(II) and Cu(II) were 5 and 6, respectively. Under these conditions, living cells of P. huenov accumulated up to 75.58% of 110 mg/L Mn(II) and 70.5% of 128 mg/L Cu(II) over 120 h, whereas, the removal efficiency of metal ions by dead cells over 1 h was 60.3% and 56.5%, respectively. These results indicate that living cells are more effective than dead biomass for bioremediation, but that greater time is required. The experimental data extends the potential use of P. huenov in biosorption and bioaccumulation of toxic heavy metals to copper and manganese, two of the most common industrial contaminants.

Toxicometallomics of Cadmium, Manganese and Arsenic with Special Reference to the Roles of Metal Transporters

  • Himeno, Seiichiro;Sumi, Daigo;Fujishiro, Hitomi
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • The transport systems for metals play crucial roles in both the physiological functions of essential metals and the toxic effects of hazardous metals in mammals and plants. In mammalian cells, Zn transporters such as ZIP8 and ZIP14 have been found to function as the transporters for Mn(II) and Cd(II), contributing to the maintenance of Mn homeostasis and metallothionein-independent transports of Cd, respectively. In rice, the Mn transporter OsNramp5 expressed in the root is used for the uptake of Cd from the soil. Japan began to cultivate OsNramp5 mutant rice, which was found to accumulate little Cd, to prevent Cd accumulation. Inorganic trivalent arsenic (As(III)) is absorbed into mammalian cells via aquaglyceroporin, a water and glycerol channel. The ortholog of aquaporin in rice, OsLsi1, was found to be an Si transporter expressed in rice root, and is responsible for the absorption of soil As(III) into the root. Since rice is a hyperaccumulator of Si, higher amounts of As(III) are incorporated into rice compared to other plants. Thus, the transporters of essential metals are also utilized to incorporate toxic metals in both mammals and plants, and understanding the mechanisms of metal transports is important for the development of mitigation strategies against food contamination.

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.