Browse > Article
http://dx.doi.org/10.1080/12298093.2021.1968624

Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov  

Van, Phu Nguyen (Institute of Biotechnology, Hue University)
Truong, Hai Thi Hong (Institute of Biotechnology, Hue University)
Pham, Tuan Anh (Department of Agronomy, Vietnam National University of Agriculture)
Cong, Tuan Le (Department of Environmental Science, University of Sciences, Hue University)
Le, Tien (Department of Parasitology, Faculty of Science, BIOCEV, Charles University)
Nguyen, Kim Cuc Thi (Institute of Biotechnology, Hue University)
Publication Information
Mycobiology / v.49, no.5, 2021 , pp. 507-520 More about this Journal
Abstract
Papiliotrema huenov was previously reported to be highly tolerant of a range of extremely toxic heavy metals. This study aimed to identify the potential of P. huenov to remove manganese and copper from aqueous solution. Physical conditions which affect removal of Mn(II) and Cu(II) were determined. Optimal temperature for adsorption of both metal ions was 30 ℃, and optimal pH for maximum uptake of Mn(II) and Cu(II) were 5 and 6, respectively. Under these conditions, living cells of P. huenov accumulated up to 75.58% of 110 mg/L Mn(II) and 70.5% of 128 mg/L Cu(II) over 120 h, whereas, the removal efficiency of metal ions by dead cells over 1 h was 60.3% and 56.5%, respectively. These results indicate that living cells are more effective than dead biomass for bioremediation, but that greater time is required. The experimental data extends the potential use of P. huenov in biosorption and bioaccumulation of toxic heavy metals to copper and manganese, two of the most common industrial contaminants.
Keywords
Papiliotrema huenov; bioaccumulation; biosorption; manganese; copper;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barboza NR, Guerra -SR, Leao VA. Mechanisms of manganese bioremediation by microbes: an overview. J Chem Technol Biotechnol. 2016;91(11): 2733-2739.   DOI
2 Vijayaraghavan K, Winnie HYN, Balasubramanian R. Biosorption characteristics of crab shell particles for the removal of manganese (II) and zinc (II) from aqueous solutions. Desalination. 2011; 266(1-3):195-200.   DOI
3 Han R, Li H, Li Y, et al. Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater. 2006;137(3):1569-1576.   DOI
4 Wang J-Y, Cui H, Cui C-W, et al. Biosorption of copper (II) from aqueous solutions by Aspergillus niger-treated rice straw. Ecol Eng. 2016;95: 793-799.   DOI
5 Luk CHJ, Yip J, Yuen CWM, et al. Biosorption performance of encapsulated Candida krusei for the removal of copper(II)). Sci Rep. 2017;7(1): 2159-2159.   DOI
6 Singh S, Kumar V, Datta S, et al. Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ. 2020;709:135895.   DOI
7 Nguyen PV, Hlavacek O, Marsikova J, et al. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14(7):e1007495.   DOI
8 Silva RMP, Rodriguez AA, De Oca JMGM, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol. 2009;100:1533-1538.   DOI
9 Zamani J, Pournia P, Seirafi HA. A novel feeding method in commercial Baker's yeast production. J Appl Microbiol. 2008;105(3):674-680.   DOI
10 Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Mol Clin Environ Toxicol. 2012;101:133-164.   DOI
11 Soares EV, Soares HMVM. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int. 2012;19(4):1066-1083.   DOI
12 Wierzba S. Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica. Polish J Chem Technol. 2017; 19(1):1-10.   DOI
13 Rehman A, Farooq H, Shakoori AR. Copper tolerant yeast, Candida tropicalis, isolated from industrial effluents: its potential use in wastewater treatment. Pak J Zool. 2007;39:405.
14 Parvathi K, Kumar RN, Nagendran R. Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2007;23(5):671-676.   DOI
15 Ianis M, Tsekova K, Vasileva S. Copper biosorption by Penicillium cyclopium: equilibrium and modelling study. Biotechnol Biotechnol Equip. 2006;20(1):195-201.   DOI
16 Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60-72.   DOI
17 Stern BR. Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A. 2010; 73(2):114-127.   DOI
18 Brewer GJ. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease. J Am Coll Nutr. 2009; 28(3):238-242.   DOI
19 Vadkertiova R, Molnarova J, Lux A, et al. Yeasts associated with an abandoned mining area in pernek and their tolerance to different chemical elements. Folia Microbiol. 2016;61(3):199-207.   DOI
20 Farhan SN, Khadom AA. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem. 2015;6(2):119-130.   DOI
21 Bag H, Lale M, Turker AR. Determination of Cu, Zn and cd in water by FAAS after preconcentration by baker's yeast (Saccharomyces cerevisiae) immobilized on sepiolite. Fresenius J Anal Chem. 1999;363(3):224-230.   DOI
22 Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162(2-3): 616-645.   DOI
23 Zhenggang X, Yi D, Huimin H, et al. Biosorption characteristics of Mn (II) by Bacillus cereus strain HM-5 isolated from soil contaminated by manganese ore. Pol J Environ Stud. 2018;28(1):463-472.   DOI
24 Huang H, Zhao Y, Xu Z, et al. Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS One. 2018; 13(8):e0203285.   DOI
25 Kanamarlapudi S, Chintalpudi VK, Muddada S. Application of biosorption for removal of heavy metals from wastewater. Biosorption. 2018;18:69.
26 Reddi AR, Jensen LT, Naranuntarat A, et al. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med. 2009;46(2):154-162.   DOI
27 C,olak F, Olgun A, Atar N, et al. Heavy metal resistances and biosorptive behaviors of Paenibacillus polymyxa: batch and column studies. J Ind Eng Chem. 2013;19(3):863-869.   DOI
28 Dursun AY, Uslu G, Cuci Y, et al. Bioaccumulation of copper (II), lead (II) and chromium (VI) by growing Aspergillus niger. Process Biochem. 2003;38(12):1647-1651.   DOI
29 Ha J, Gelabert A, Spormann AM, et al. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta. 2010; 74(1):1-15.   DOI
30 Donmez G, Aksu Z. Bioaccumulation of copper(II) and nickel(II) by the non-adapted and adapted growing Candida sp. Water Res. 2001;35(6): 1425-1434.   DOI
31 Chen X, Tian Z, Cheng H, et al. Adsorption process and mechanism of heavy metal ions by different components of cells, using yeast (Pichia pastoris) and Cu 2+ as biosorption models. RSC Adv. 2021;11(28):17080-17091.   DOI
32 Salvadori MR, Ando RA, Oller do Nascimento CA, et al. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian amazonia. PLoS One. 2014;9(1):e87968.   DOI
33 Omar HH. Biosorption of copper, nickel and manganese using non-living biomass of marine alga, ulva lactuca. Pak J Biol Sci. 2008;11(7):964-973.   DOI
34 Dutta A, Zhou L, Castillo-Araiza CO, et al. Cadmium (II), lead (II), and copper (II) biosorption on baker's yeast (Saccharomyces cerevesiae). J Environ Eng. 2016;142:C6015002.   DOI
35 Chang J-S, Law R, Chang C-C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res. 1997; 31(7):1651-1658.   DOI
36 Hou Y, Cheng K, Li Z, et al. Biosorption of cadmium and manganese using free cells of Klebsiella sp. isolated from waste water. PLoS One. 2018; 13(5):e0198309.   DOI
37 Sayyadi S, Ahmady-Asbchin S, Kamali K. Biosorption of Cd(II) and Cs(I) from aqueous solution by live and dead cells of Saccharomyces carlsbergensis PTCC 5051. Environ Technol. 2018; 39(4):450-456.   DOI
38 Wang L, Wang R, Zhan J, et al. High levels of copper retard the growth of Saccharomyces cerevisiae by altering cellular morphology and reducing its potential for ethanolic fermentation. Int J Food Sci Technol. 2021;56(6):2720-2731.   DOI
39 Hung C-S, Barlow DE, Varaljay VA, et al. The biodegradation of polyester and polyester polyurethane coatings using Papiliotrema laurentii. Int Biodeterior Biodegradation. 2019;139:34-43.   DOI
40 Ruas FAD, Amorim SS, Leao VA, et al. Rhodotorula mucilaginosa isolated from the manganese mine water in Minas Gerais, Brazil: potential employment for bioremediation of contaminated water. Water, Air, Soil Pollut. 2020; 231:1-14.   DOI
41 Nguyen N-T, Sekhon SS, Yoon J, et al. Effect of heavy metals, pesticides and pharmaceuticals on yeast's vacuoles as a biomarker for toxic detection. Mol Cell Toxicol. 2017;13(3):287-294.   DOI
42 Das D, Charumathi D, Das N. Bioaccumulation of the synthetic dye basic violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics. J Hazard Mater. 2011;186(2-3):1541-1552.   DOI
43 Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009; 27(2):195-226.   DOI
44 Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev. 2018;2018: 1-11.
45 O'Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep. 2015;2(3):315-328.   DOI
46 Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35(1):32-46.   DOI
47 Rehman A, Anjum MS, Hasnain S. Cadmium biosorption by yeast, Candida tropicalis CBL-1, isolated from industrial wastewater. J Gen Appl Microbiol. 2010;56(5):359-368.   DOI
48 Sahan T, Ceylan H, Sahiner N, et al. Optimization of removal conditions of copper ions from aqueous solutions by trametes versicolor. Bioresour Technol. 2010;101(12):4520-4526.   DOI
49 Mishra A, Malik A. Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol. 2013;43(11):1162-1222.   DOI
50 Igiri BE, Okoduwa SIR, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:1-16.
51 Massoud R, Hadiani MR, Hamzehlou P, et al. Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol. 2019;37:56-60.   DOI
52 Fadel M, Hassanein NM, Elshafei MM, et al. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC J. 2017;13(1):106-113.   DOI
53 Amorim SS, Ruas FAD, Barboza NR, et al. Manganese (Mn2+) tolerance and biosorption by Meyerozyma guilliermondii and Meyerozyma caribbica strains. J Environ Chem Eng. 2018;6(4): 4538-4545.   DOI
54 Khalilnezhad R, Olya ME, Khosravi M, et al. Manganese biosorption from aqueous solution by Penicillium camemberti biomass in the batch and fix bed reactors: a kinetic study. Appl Biochem Biotechnol. 2014;174(5):1919-1934.   DOI
55 Torab-Mostaedi M, Asadollahzadeh M, Hemmati A, et al. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J Taiwan Inst Chem Eng. 2013; 44(2):295-302.   DOI
56 Savastru E, Zamfir C-I, Diaconu M, et al. Biosorption of Cu (II) Ions from aqueous solution on Saccharomyces cerevisiae biomass: isotherm and kinetics modelling. 2019 E-Health Bioeng Conf. IEEE; 2019. p. 1-4.
57 Kareem SO, Omeike SO, Balogun SA, et al. Removal of Mn (II) and Fe (II) by Aspergillus sp. TU-GM14 immobilized on Detarium microcarpum matrix. Glob Nest J. 2014;16:597-608.   DOI
58 Li Q, Wu S, Liu G, et al. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol. 2004;34(1-3):135-142.   DOI
59 Li C, Yu J, Wang D, et al. Efficient removal of zinc by multi-stress-tolerant yeast Pichia kudriavzevii A16. Bioresour Technol. 2016;206:43-49.   DOI
60 Li C-C, Chung H-P, Wen H-W, et al. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the lanyu low-level radioactive waste repository in Taiwan. J Environ Radioact. 2015;146:80-87.   DOI
61 Honfi K, Talos K, Konig-Peter A, et al. Copper (II) and phenol adsorption by cell surface treated Candida tropicalis cells in aqueous suspension. Water Air Soil Pollut. 2016;227:61.   DOI
62 Van Nguyen P, Plocek V, Vachova L, et al. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6(1):7-10.   DOI
63 Amirnia S, Ray MB, Margaritis A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chem Eng J. 2015; 264:863-872.   DOI
64 Iskandar NL, Zainudin NAIM, Tan SG. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci. 2011;23(5):824-830.   DOI
65 Machado MD, Soares EV. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquat Toxicol. 2014;147:1-6.   DOI
66 Nishikawa K, Yamakoshi Y, Uemura I, et al. Ultrastructural changes in Chlamydomonas acidophila (chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol. 2003;44(2):253-259.   DOI
67 Hasan HA, Abdullah SRS, Kofli NT, et al. Biosorption of manganese in drinking water by isolated bacteria. J Appl Sci. 2010;10(21): 2653-2657.   DOI
68 Ezzouhri L, Ruiz E, Castro E, et al. Mechanisms of lead uptake by fungal biomass isolated from heavy metals habitats. Afinidad. 2010;67:269007.
69 Yilmazer P, Saracoglu N. Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stipitis yeast. J Chem Technol Biotechnol Int Res Process Environ Clean Technol. 2009;84:604-610.
70 Donmez G, Aksu Z. The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem. 1999;35(1-2): 135-142.   DOI
71 Dursun AY, Uslu G, Tepe O, et al. A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J. 2003;15(2):87-92.   DOI
72 Tastan BE, Ertugrul S, Donmez G. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol. 2010; 101(3):870-876.   DOI
73 Do TA, Sakai T, Kishida M, et al. Isolation and characterization of a variant manganese resistant strain of Saccharomyces cerevisiae. Biocontrol Sci. 2016;21(4):253-260.   DOI
74 Batic M, Raspor P. Uptake and bioaccumulation of Cr (III) in yeast Saccharomyces cerevisiae. Food Technol Biotechnol. 1998;36:291-297.
75 Khan Z, Rehman A, Hussain SZ. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere. 2016;159:32-43.   DOI
76 Kadukova J, Vircikova E. Comparison of differences between copper bioaccumulation and biosorption. Environ Int. 2005;31(2):227-232.   DOI
77 Surussawadee J, Khunnamwong P, Srisuk N, et al. Papiliotrema siamense fa, sp. nov., a yeast species isolated from plant leaves. Int J Syst Evol Microbiol. 2014;64(Pt 9):3058-3062.   DOI
78 do Nascimento JM, de Oliveira JD, Rizzo ACL, et al. Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol Reports. 2019; 21:e00315.   DOI
79 Hernandez Mata KM, Monge Amaya O, Certucha Barragan MT, et al. Metallic biosorption using yeasts in continuous systems. Int J Photoenergy. 2013;2013:1-4.
80 Chen XC, Wang YP, Lin Q, et al. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces. 2005;46(2):101-107.   DOI
81 Nguyen KCT, Nguyen PV, Truong HTH. Heavy metal tolerance of novel papiliotrema yeast isolated from Vietnamese mangosteen. Mycobiology. 2020; 48(4):296-303.   DOI
82 Anand P, Isar J, Saran S, et al. Bioaccumulation of copper by trichoderma viride. Bioresour Technol. 2006;97(8):1018-1025.   DOI
83 Chen SH, Cheow YL, Ng SL, et al. Bioaccumulation and biosorption activities of indoor Metal-Tolerant Penicillium simplicissimum for removal of toxic metals. Int J Environ Res. 2020;14(2):235-242.   DOI
84 Uslu G, Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater. 2006;135(1-3):87-93.   DOI
85 Hirayama T, Miyazaki T, Ito Y, et al. Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation. Sci Rep. 2020; 10(1):3814-3810.   DOI