• Title/Summary/Keyword: metal thin membrane

Search Result 53, Processing Time 0.041 seconds

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

Preparation of Titanium Microfiltration Membrane by Field-flow Fractionation Deposition

  • Wang, QiangBing;Tang, HuiPing;Zhang, QianCheng;Qiu, QunFeng;Wang, JianYong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.312-313
    • /
    • 2006
  • The primary aim pursued by the preparation of separation membrane is the preparation of the membrane thin as well as with no defect. The field-flow fractionation deposition is a new molding technology which can overcome the traditional disadvantages such as multi-preparation to the preparation of great area of separation membrane with no defect. Therefor the mainly ingredients which influence the appearance and performance of titanium membrane layer are investigated by scanning electricity mirror (SEM) as well as porous material testing instrument: powder performance prepared and confected; selection of supporting body; sintering system such as temperature and time. It is shown that the membrane thickness can be controlled at $50{\mu}m$ or so; the filtration precision mainly rests with powder performance and selection of supporting body and little sintering system

  • PDF

The Effect of Resin Treatment for Improving of the Metal Thin Membrane Fastness on Polyester Fabrics by Sputtering (Sputtering에 의한 polyester 직물의 박막내구성 개선을 위한 수지처리 효과)

  • Koo Kang;Jeon Sang-Min;Song Byung-Gab;Park Young-Mi
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.31-41
    • /
    • 2006
  • Functional properties are available with sputtering. But sputtering treatment alone cannot got a good fastness performance to washing, rubbing and light. This research was objected to investigate optimum condition by sputtering on polyester through various processing conditions such as ion current and treatment time, and then various resin treated onto metal coated polyester fabrics in order to increase washing fastness of metal membrane. As the results, the optimum conditions revealed 1500 mA of ion current, 2 min of treatment time in sputter, and suitable resin concentrations were 2% of o.w.s (on the weight of solution) in resin treatment. Therefore, we could get enhanced anti-static effect and flex stiffness as well as washing fastness in sputtered polyester fabric with various resin treatment, for example, melamine and polyurethane.

Review on Graphene Oxide-based Nanofiltration Membrane (산화그래핀 기반 나노여과막의 최신 연구동향)

  • Kim, Dae Woo
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.130-139
    • /
    • 2019
  • Various two-dimensional nano materials such as graphene, zeolite, and metal-organic framework have been utilized to develop an ultra-thin high-performance membrane for water purification, gas separation, and so on. Particularly, in the case of graphene oxide, synthesis methods and thin film coating techniques have been accumulated and established since early 2000s, therefore graphene oxide has been rapidly applied to membrane field. The multi-layered graphene oxide thin film can filter molecules separately by the molecular sieving of interlayer spacing between adjacent layers, and it is also possible to separate various materials depending on the surface functional groups or the degree of interaction to intercalated materials. This review mainly focuses on the nanofiltration application of graphene oxide. The major factors affecting the separation performance of graphene oxide membrane in solvent are summarized and other technical elements required for the commercialization of graphene oxide membranes will be discussed including stability issue and fabrication method.

$H_2$ sensor for detecting hydrogen in DI water using Pd membrane (발전기 스테이터의 냉각코일에 pinhole 발생을 검지 할 수 있는 수소센서 개발)

  • Choi, Sie-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.442-445
    • /
    • 1999
  • In this work, to detect of hydrogen in DI water in the generator area of nuclear power plants was fabricated Pd/Pt gate MISFET sensor using Pd membrane. $H_2$ permeation through Pd accounts for external mass transfer, surface adsorption and desorption, transitions to and from the bulk metal, and diffusion within the metal. The identification of pinholes in the generator area of plant is an important safety consideration, as hydrogen build-up gives rise to explosion. For this type of application the sensor needs to be isolated in DI water, accordingly, a Pd membrane was used to separate the DI water. The hydrogen in the DI water was then absorbed on the Pd thin film and diffused into the oil through the thin film. The Pd/Pt gate MISFET sensor, encapsulated by oil, will thereby detect permeated hydrogen.

  • PDF

Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration (나노여과를 위한 금속유기구조체 기반 박막 나노복합막의 최근 발전)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.35-51
    • /
    • 2021
  • Advancements in thin-film nanocomposite (TFN) membrane technology for nanofiltration is crucial for removing pollutants from natural resources. In recent years, various metal-organic framework (MOF) modifications have been tested to overcome the drawbacks that are inevitable with conventional thin-film composite (TFC) and TFN membranes. In general, MIL-101(Cr), UiO-66, ZIF-8, and HKUST-1 [Cu3(BCT2)] are MOFs that were proven to exhibit excellent membrane performance in terms of solvent permeability and solute rejection; their respective studies are reviewed in this article. Other novelties, such as the simultaneous use of different MOFs and unique MOF layering techniques (e.g., dip-coating, spray pre-disposition, Langmuir-Schaefer film, etc.) are also discussed as they present alternate solutions for membrane enhancement and/or preparation convenience. Not only are these MOF-modified TFN membranes frequently shown to improve separation performance from their respective TFC and TFN membranes, but many reports also explain their potential for a cost-effective and environmentally friendly process. In this review the thin film nanocomposite nanofiltration membrane is discussed.

Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding (금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성)

  • Kim, Se-Hong;Yang, Ji-Hye;Lim, Da-Sol;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF