• 제목/요약/키워드: metal sulfides

검색결과 96건 처리시간 0.023초

황산염환원미생물에 의한 금속재료의 부식 특성 (Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium)

  • 이승엽;정종태
    • 한국광물학회지
    • /
    • 제26권4호
    • /
    • pp.219-228
    • /
    • 2013
  • 방사성 폐기물을 지하에 장기 보관하는 금속 용기에 관한 생지화학적 부식 특성을 알아보기 위해 주철과 구리로 된 금속재료를 환원조건 하에서 디설프리칸스 황산염환원미생물과 3개월간 반응시켰다. 금속재료의 화학적/광물학적 변화를 알아보기 위해 주기적으로 용존 금속이온들의 농도를 측정하였으며, 실험이 종료된 이후 금속 시편 및 표면 이차생성물들을 전자현미경을 이용하여 분석하였다. 디설프리칸스가 없는 조건에서는 금속재료의 부식이 매우 미약하였으나, 미생물이 있는 경우에는 부식이 상대적으로 컸다. 관찰된 생지화학적 부식 산물은 주로 맥키나와이트와 황화구리 같은 검은색의 금속황화물이었으며, 표면에서 쉽게 분리되거나 콜로이드화되어 부유하였다. 특히, 구리 시편의 경우 용액 상에 용존 철이 존재할 때 세균에 의한 구리 부식의 가속화가 관찰되었는데, 이는 구리 표면에 다른 종의 황화철이 성장하면서 구리 간의 결속력을 약화시켰기 때문인 것으로 보인다.

한국이 탐사 중인 해저광물자원의 희유금속 함량과 의미 (Rare Metal Contents and Their Implications of Seabed Mineral Resources Explored by Korea)

  • 박상준;문재운;이경용;지상범
    • 자원환경지질
    • /
    • 제43권5호
    • /
    • pp.455-466
    • /
    • 2010
  • 한국이 현재 탐사하고 있는 해저광물자원의 유형은 망간단괴, 망간각, 다금속황화광체 등으로 구분된다. 망간단괴에 함유되어 있는 주요 희소금속은 Pt로 지각함량 대비 최대 400 배까지 부화되어 있다. 망간단괴의 총 희토류 함량은 0.037~0.302 REO %, 평균 0.12 REO %를 보인다. 망간각의 주요 희소금속은 Te 및 Pt로 각각 10800 배, 150배 정도의 부화량을 보인다. 총 희토류 함량은 0.013-0.387 REO %, 평균 0.18 REO %로 망간단괴 보다 다소 높은 함량을 보인다. 다금속화황광체의 주요 희소금속은 Se 및 In으로 각각 1300 배, 110 배의 높은 부화량을 보이며, 금(0.8~26.3 g/t), 은(0.9~348.0 g/t) 등의 귀금속이 함유된다. 해저광물자원에 함유되어 있는 희유금속은 채광 예상 금속 종인 Co, Ni, Cu 등의 채광 경제성을 높여 줄 것으로 생각되며 첨단산업을 위한 희유금속 확보 차원에서 의미가 있다.

광산폐수 속의 중금속의 분석과 특성 (Analysis and Characteristics of Heavy Metals in Mines Waste Water)

  • 이경호
    • 동굴
    • /
    • 제92호
    • /
    • pp.9-18
    • /
    • 2009
  • A number of closed metal mines act as point sources of contamination on nearby streams, soils and plants in our country. The contamination of twelve decomposed samples had earned from nine closed metal mines had been evaluated by TEA-3000. The contents of heavy metal with ion fraction exchange and carbonate fraction forms had been showed that the speciation of heavy metals represented with easy solubility, mobility and bioavailable of plants, and in case of sulfide compounds and organic residuals forms are related with the speciation of metals which may be stable forms because of strong bindable capacity. Also heavy metals elements in mosts of mines got with relative stable within crystal lattice, but results of trace element analyser showed that, in the most of tailings from mine areas, large portions of concentration of heavy metals were explained as stable from, sulfides/ organics and residual. In tailing from Imchun mines, the concentrations extracted by water were relatively high as compared with other mine areas whose total concentrations were very high because of large quantities of exchangeable ions and carbonates and low soil pH. Danger Index (D.I.) suggested in this study was based on the cumulative concentrations of step 1 and 2 from the result of trace element analyser. When the soil pH was considered, this index became better indicator to determine the priority for the remediation of mine area.

한국 금-은광화작용과 천열수 광상의 성인모텔 : 탐사에의 적용

  • 최선규;박상준;김창성
    • 한국광물학회:학술대회논문집
    • /
    • 한국광물학회.대한자원환경지질학회.대한광업진흥공사 2002년도 추계 공동 심포지엄 논문집: 국내 자원의 현황과 전망
    • /
    • pp.119-136
    • /
    • 2002
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (c.a. 200-150 (?) Ma) coincident with orogenic time, gold mineralization took place between c.a. 195 and 135 (127 ?) Ma. The Jurassic Au deposits commonly show several characteristics; prominent association with pegmatites, low Ag/hu ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, arsenopyrite, Au-rich electrum, pyrrhotite and/or pyrite. During the Bulgugsa igneous activities $(110\~50Ma)$, the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AE/AU ratios in the ore concentrates, and diversity of ore minerals including base-metal sulfides, pyrite, arsenopyrite, Ag-rich electrum and native silver nth Ag sulfides, Ag-Sb-As sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems in Korea. The Jurassic Au-dominant deposits (orogenic type) were formed at the relatively high temperature $(about\;300^{\circ}\;to\;450^{\circ}C)$ and deep-crustal level $(4.0{\pm}1.5\;kb)$ from the hydrothermal fluids containing more amounts of magmatic waters $(\delta\;^{18}O_{H2O}\;5\~10\%_{\circ})$. It can. It can be explained by the dominant ore-depositing mechanisms as $CO_2$ boiling and sulfidation, suggestive of hypo- to mesothermal environments. In contrast, the Cretaceous Au-dominant $(l13\~68\;Ma),\;Au-Ag \;(108\~47\;Ma)$ and Ag-dominant $(103\~45\;Ma)$ deposits, which correspond to volcanic-plutonic-related type, occurred at relatively low temperature $(about\;200^{\circ}\;to\;350^{\circ}C)$ and shallow-crustal level $(1.0\{pm}0.5\;kb)$ from the ore-forming fluids containing more amounts of less-evolved meteoric waters$(\delta\;^{18}O_{H2O}\;-10\~5\%_{\circ})$. These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epi- to mesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit styles.

  • PDF

한국 금-은광화작용과 천열수 광상의 성인모델: 탐사에의 적용

  • 최선규;박상준;김창성
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2002년도 추계 공동 심포지엄 논문집
    • /
    • pp.119-136
    • /
    • 2002
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. Dunng the Daebo igneous activities (c.a. 200~150 (\ulcorner) Ma) coincident with orogenic time, gold mineralization took place between c.a. 195 and 135 (127 \ulcorner) Ma. The Jurassic Au deposits commonly show several characteristics; prominent association with pegmatites, low Ag/Au ratios In the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, arsenopyrite, Au-rich electrum, pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (110~50 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high Ag/Au ratios in the ore concentrates, and diversity of ore minerals including base-metal sulfides, pyrite, arsenopyrite, Ag-rich eletrum and native silver with Ag sulfides, Ag-Sb-As sulfosalts and he tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems in Korea. The Jurassic Au-dominant deposits (orogenic type) were formed at the relatively high temperature (about 300$^{\circ}$ to 45$0^{\circ}C$) and deep-crustal level (4.0$\pm$1.5 kb) from the hydrothermal fluids containing more amounts of magmatic waters ($\delta$$^{18}$ $O_{H2O}$; 5~10$\textperthousand$). It can be explained by the dominant ore-depositing mechanisms as $CO_2$ boiling and sulfidation, suggestive of hypo- to mesothermal environments. In contrast, the Cretaceous Au-dominant (l13~68 Ma), Au-Ag (108~47 Ma) and AE-dominant (103~45 Ma) deposits, which correspond to volcanic-plutonic-related type, occurred at relatively low temperature (about 200$^{\circ}$ to 35$0^{\circ}C$) and shallow-crustal level (1.0$\pm$0.5 kb) from the ore-forming fluids containing more amounts of less-evolved meteonc waters ($\delta$$^{18}$ $O_{H2O}$;-10~5$\textperthousand$). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complekities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epi- to mesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit styles.les.

  • PDF

고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성 (Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes)

  • 이지영;이승엽;백민훈;정종태
    • 방사성폐기물학회지
    • /
    • 제11권2호
    • /
    • pp.95-102
    • /
    • 2013
  • 고준위방사성폐기물 처분장의 완충재로 고려되고 있는 자연산 벤토나이트에 대해서 기존의 물리 화학적 및 광물학적 성질 외에 생물학적 특성을 살펴보았다. 국내산 '경주벤토나이트'를 대상으로 만든 현탁액을 영양배지 세럼병에서 일주일 이상 숙성시키며 시간에 따른 벤토나이트의 변화를 관찰하였다. 영양배지에서 활성화된 벤토나이트는 고체 시료뿐만 아니라 용액도 함께 변하였다. 용존황산염 수용액으로부터 검은색의 미립자 황화물이 생성되기 시작하였으며, 시료를 채취하여 배양한 결과 4 종류의 황산염환원박테리아(SRB)가 자체 생존하고 있음이 확인되었다. 이러한 결과는 벤토나이트 분말시료 내에 황산염환원(혹은 금속환원)박테리아가 고착 및 서식하고 있음을 말해주는 것으로, 이는 지하의 환원환경 조건하에서 완충재 내외부에 장기적으로 생지화학적 영향이 발현될 가능성이 있음을 의미한다.

탄산염암 층준교대형 백전광상의 천열수 금-은 광화작용과 생성환경 (Epithermal Gold-Silver Mineralization and Depositional Environment of Carbonate-hosted Replacement Type Baegjeon Deposits, Korea)

  • 이찬희;박희인
    • 자원환경지질
    • /
    • 제29권2호
    • /
    • pp.105-117
    • /
    • 1996
  • The Baegjeon Au-Ag and Sb deposits, small of disseminated-type gold deposits are formed as a result of epithermal processes associated a shallow-seated Cretaceous Yeogdun granitoids intrusion. The orebodies are formed by the replacement of carbonate minerals in thin-bedded oolitic limestone beds favorable for mineralization within the upper-most Cambrian Pungchon Limestone Formation. The mineralization can be recognized one stage, ore minerals composed of base metal sulfides, electrum, AgSb-S, Ag-Cu-S, and Sb-S minerals. Gold-bearing minerals consist of electrum and submicroscopic invisible gold in pyrite and arsenopyrite. The composition of electrums ranges from 33.58 to 63.48 atomic % Ag. Fluid inclusion studies reveal that ore fluids were low saline $NaCl-CO_2-H_2O$ system. Temporary fluid mixing and boiling occured in later stage. Fluid inclusion data indicates the homogenization temperatures and salinities of NaCl eqivalent wt% were 176 to $246^{\circ}C$ and from 0.0 to 4.8 wt%, respectively. And $-logfs_2$, of mineralization obtained by thermodynamic considerations as 12.4 to 13.8 atm. The ${\delta}^{34}S_{H_2S}$, values of hydrothermal sulfides were calculated to be 6.8 to 10.2‰ which was of sedimentary origin. The ${\delta}^{18}O_{H_2O}$ and ${\delta}^{13}C_{CO_2}$, range from -3.9 to 9.6‰, from -1.1 to -2.2‰, and ${\delta}D$ range from -89 to -118‰, respectively. The Au deposition during mineralization seems to have occurred as a result of decrease of temperature, $fs_2$, $fo_2$, and pH probably due to oxidation by meteoric water mixing, which destabilized original $Au(HS)^-{_2}$. The mineralization of the Baegjeon deposits is similar to the Carlin-type deposits characterized by sediments-hosted epithermal bedding replacement disseminated gold deposits.

  • PDF

동보(東寶) 중석(重石)-모리브덴 광상(鑛床)의 광물공생(鑛物共生)과 유체포유물(流體包有物) (Mineral Paragenesis and Fluid Inclusions of the Dongbo Tungsten-Molybdenum Deposits)

  • 박희인;문상호;배영부
    • 자원환경지질
    • /
    • 제18권4호
    • /
    • pp.331-342
    • /
    • 1985
  • The Dongbo tungsten-molybdenum deposits are fissure-filling veins emplaced in granites of late Cretaceous age. Integrated field, mineralogic and fluid inclusion studies were undertaken to illuminate the characters and origin of the ore deposits. Mineral paragenesis is complicated by repeated fracturing, but four distinct depositional stages can be recognized; (I) tungsten-molybdenum minerals-quartz-chlorite stage, (II) iron-oxide and sulfides-quartz stage, (III) iron -oxide-base metal sulfides-sulfosalts-quartz-carbonates stage, (IV) barren rhodochrosite-zeolite stage. Fluid inclusion studies were carried out for stage I quartz and stage III quartz, sphalerite and calcite. Fluid inclusion studies reveals highly systematic trends of homogenization temperature and salinity throughout the mineralization. Ore fluids during stage I were complex, NaCl rich brine and salinity reached values as high as 34.4 weight percent equivalent NaCl, but the later ore fluids were more dilute and reached to 9.7 weight percent equivalent NaCl during stage III. Intermittent boiling of ore fluid during stage I is indicated by the fluid inclusions in stage I quartz. Depositional temperatures and pressures during stage I range from $520^{\circ}C$ to $265^{\circ}C$and from 600 to 400 bars. Homogenization temperatures of the stage III quartz, sphalerite and calcite range from $305^{\circ}C$ to $190^{\circ}C$. Fluid inclusion data from the Dongbo mine are nearly similar to those from other hydrothermal tungsten deposits in the Kyeongsang basin. Depositional temperature and salinity of ore fluids during precipitation of tungsten-molybdenum minerals in Dongbo mine were much higher, but $CO_2$ contents were much lower than those from hydrothermal tungsten-molybdenum deposits of late Cretaceous plutonic association in central parts of Korean peninsula.

  • PDF

Effects of Rare Earth Metal Addition on the Cavitation Erosion-Corrosion Resistance of Super Duplex Stainless Steels

  • 심성익;박용수;김순태;송치복
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.301-301
    • /
    • 1999
  • Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0,4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

코발트의 제련과 리사이클링 (Extractive Metallurgy and Recycling of Cobalt)

  • 손호상
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.252-261
    • /
    • 2022
  • Cobalt is a vital metal in the modern society because of its applications in lithium-ion batteries, super alloys, hard metals, and catalysts. Further, cobalt is a representative rare metal and is the 30th most abundant element in the Earth's crust. This study reviews the current status of cobalt extraction and recycling processes, along with the trends in its production amount and use. Although cobalt occurs in a wide range of minerals, such as oxides and sulfides of copper and nickel ores, the amounts of cobalt in the minerals are too low to be extracted economically. The Democratic Republic of Congo (DRC) leads cobalt mining, and accounts for 68.9 % of the global cobalt reserves (142,000 tons in 2020). Cobalt is mainly extracted from copper-cobalt and nickel-cobalt concentrates and is occasionally extracted directly from the ore itself by hydro-, pyro-, and electro-metallurgical processes. These smelting methods are essential for developing new recycling processes to extract cobalt from secondary resources. Cobalt is mainly recycled from lithium-ion batteries, spent catalysts, and cobalt alloys. The recycling methods for cobalt also depend on the type of secondary cobalt resource. Major recycling methods from secondary resources are applied in pyro- and hydrometallurgical processes.