• Title/Summary/Keyword: metal sulfides

Search Result 95, Processing Time 0.031 seconds

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia (인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.

An Equilibrium Analysis to Determine the Speciation of Metals in the Incineration of Waste Containing Chlorine and Sulfur (염소와 황을 함유한 폐기물의 소각시 생성되는 유해 중금속류 결정에 대한 화학평형 계산)

  • Lee, Jung-Jin;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1996
  • An equilibrium analysis was carried out to determine principal species in the incineration of hazardous waste, which was assumed as a compound of hydrocarbon fuel, chlorine, sulfur, and heavy metals, and their behaviors with variation of temperature, chlorine and sulfur concentrations. Calculated results showed that the most important parameter influencing the principal species was temperature. Chlorine concentration affected on mole fractions of the species, especially at high temperature. Existence of sulfur had a significant effect on the species at low temperature, regardless of surfur concentration. Generally, principal species at high temperature were chlorides and oxides, while the principal species at low temperature were sulfides. As temperature increased, mole fractions of the principal species increased at low temperature, however, mole fractions of some metal species decreased at high temperature.

  • PDF

Ore and Mineral Paragenesis of Daehwa and Donsan Tungsten-Molybdenum Deposits (대화(大華) 및 돈산(敦山) 중석(重石)·모리브덴 광상(鑛床)의 광석(鑛石)과 광물공생관계(鑛物共生關係))

  • Park, Hee-In;Choi, Suck-Won;Kim, Deog-Lae
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1985
  • The Daehwa and Donsan tungsten-molybdenum deposits are composed of numerous fissure-filling veins developed in Precambrian gneiss and Cretaceous granite and quartz porphyry. K-Ar age of biotite in granite and that of muscovite in ore veins are $105{\pm}5\;Ma$ and 88.2~88.6 Ma respectively. Occurrence of ore deposits shows that relevant igneous rock is possibly quartz porphyry rather than above mentioned granite in temporal view point. Vein structure and mineralogy suggest that ore veins were formed by continuous vein filling, not by repeated mineralization. Three distinct depositional stages with decreasing age can be devided on the basis of mineral paragenesis and fluid inclusion studies: Stage I, deposition of oxides and silicates; stage II, deposition of base-metal sulfides and sulfosalts with carbonates; stage III, deposition of barren calcite and fluorite. Tungsten, molybdenum and tin mineralization occurred in stage I.

  • PDF

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Studies on the Geology and Geochemistry in the Beonam Mine, Korea (전북 번암광산의 지질과 지화학적 연구)

  • Chung, Jae-Il;Na, Choon-Ki;Lee, Young-Up;Jeon, Seo-Ryeong;Kim, Seon-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.623-633
    • /
    • 1995
  • The Beonam deposits which is located in south-western part of Sobaeksan massif are emplaced along $N20{\sim}30^{\circ}E$ trending fissures in Precambrian Sobaeksan gneiss complex. Surrounding granites are inferred to be differentiated and formed from calc-alkaline magma which was generated from remelting or partial melting of the crustral material having igneous composition. The Sr isotope data of ore minerals showing significantly low initial Sr value relative to those of surrounding granite batholiths suggest that the ore-bearing fluid formed the Beonam Au-Ag mine are isotopically distinct from those of the wall rocks, and it indicates that there is no evidence of genetic relationship between ore-bearing fluids and surrounding granites, although further study should be needed. The results of paragenetic studies suggest three stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage, stage III: minor silverbearing minerals, barren quartz and carbonates stage. The temperature, salinity and pressure of the Beonam deposits estimated from mineral assemblage, chemical composition, fluid inclusion and sulfur isotope geothermometry are as follows; stage I: $200{\sim}315^{\circ}C$, 3.5~6.5 NaCl eq. wt%, 0.28~0.61 Kbar, stage II: $150{\sim}235^{\circ}C$, 4.5~7.4 NaCl eq. wt%, 0.11~0.15 Kbar. The estimated oxygen and sulfur fugacity during first stage mineralization, based on phase relation of associated minerals, range from $10^{35.1}{\sim}10^{-39.7}$ atm. and $10^{-11.0}{\sim}10^{-13.4}$ atm., respectively. All these evidences suggest that the Beonam deposits are polymetallic meso-epithermal ore deposits.

  • PDF

Genetic Environment of the Samsung Gold-Silver Deposit, Republic of Korea: Ore Minerals, Fluid Inclusion and Stable Isotope Studies (삼성 금-은광상의 생성환경: 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Gill-Jae;Koh, Sang-Mo;You, Byoung-Woon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.443-453
    • /
    • 2010
  • The Samsung gold-silver deposit consists of quartz veins that fill along the fault zone within Cretaceous shale and sandstone. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I is main ore mineralization and stage II is barren. Stage I is associated with wall-rock alteration minerals(sericite, pyrite, chlorite, quartz), rutile, base-metal sulfides(pyrrhotite, pyrite, sphalerite, chalcopyrite, galena), and electrum. Stage II occur quartz, calcite and pyrite. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 145 to $309^{\circ}C$ and from 0.4 to 12.4 wt.% NaCl, respectively. It suggests that hydrothermal fluids were cooled and diluted with the mixing of meteoric water. The main deposition of base-metal sulfides and electrum occurred as a result of cooling and dilution at temperature between $200^{\circ}C$ and $300^{\circ}C$. Sulfur(9.3~10.8‰) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen[-2.3~0.9‰(quartz: 0.3‰, 0.9‰, calcite: -2.3‰)] and hydrogen[-86~-76‰(quartz: -86‰, -82‰, calcite: -76‰)] isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Considerations on the Safety of Electric Caps Based on Measured Electrical Resistivity of Rock Samples (암석의 전기비저항 측정을 통한 전기뇌관의 사용 안전성 검토)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Shin, Seung-Wook;Kim, Soo-Lo
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • Much care should be taken when electric caps are used in blast site than when non-electric initiation systems are used. This is because electric caps can cause premature firing or misfires if stray currents of high magnitude flow into the blasting circuit. If the rock has higher electrical conductivity or lower electrical resistivity, such risks will be increased because the rock will provide more passages for the stray currents to flow into the blasting circuit. In this study, several rock samples obtained at a blast site were tested for electrical resistivity to decide whether electric caps could be used or not in the site. The measured electrical resistivity was $39{\sim}47{\Omega}{\cdot}m$ for the rock samples that had a higher content of metal sulfides. Contrary, the resistivity was $15000{\sim}21000{\Omega}{\cdot}m$ for ordinary rocks. Especially, in the case of the rock of electric resistivity of $39{\Omega}{\cdot}m$, only 2-V electric potential enables a stray current to flow through the rock of 1-m length, which can cause the premature firing of a detonator whose initiation current is 0.4 A. This result shows that electric initiation system should not be used in the site because rocks containing much amount of metal sulfides are widely distributed there.

Hydrothermal Gold mineralization of the trabong district, vietnam : Mineralogical and geochemical study (베트남 짜봉(Trabong) 지역의 열수 금 광화작용 : 광물 및 지화학적 연구)

  • 한진경
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.129-139
    • /
    • 1999
  • Hydrothermal gold deposits of the Trabong district in Vietnam occur as single-stage quartz $\pm$ calcite veins (0.3-1.2 m thick) which fill fault fractures in graphite-bearing gneiss and schist of the Chulai Complex and Kham Duc Formation of the Proterozoic age. Ore grades are 1.3 to 92.4 g/ton Au. Ore mineralogy is very simple, consisting mainly of pyrite with minor amounts of base-metal sulfides and electrum. Gold grains occur in two assemblages as follows: (1) early, Fe-rich (7.2-10.4 mole % FeS) sphalerite + electrum (50.4-64.3 atom % Au) assemblage occurring as inclusions in pyrite; (2) late, Fe-poor «4.7 mole % FeS) sphalerite + galena + electrum (47.6-81.7 atom % Au) assemblage occurring along fractures of pyrites. Based on fluid inclusion data and thermochemical considerations of ore mineral assemblages, ore minerals were formed at high temperatures (about $230^{\circ}C$ to $420^{\circ}C$) from $H_{2}O-CO_{2}(-CH_{4})$-NaCI fluids with the sulfur fugacity of about $10^{-6}$ to $10^{-10}$ atm. Fluid inclusion data also indicate that ore mineralization occurred mainly as a result of fluid unmixing accompanying $CO_2$ effervescence. Calculated oxygen and measured hydrogen isotope compositions of mineralizing waters (${\delta}^{18}O_{V-SMOW}$ values = 5.3 to 8.6$\textperthousand$, ${\delta}D_{V-SMOW}$ values = - 60 to - 52$\textperthousand$), along with the sulfur isotope compositions of vein sulfides (${\delta}^{34}S_{CDR}$ values = - 1.2 to 2.8$\textperthousand$) and carbon isotope compositions of inclusion $CO_2$ (${\delta}^{13}C_{PDB}$ values = - 4.7 to - 2.0$\textperthousand$) indicate that the high temperature (mesohypothermal) gold mineralization formed from a magmatic fluid.

  • PDF

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Bongsang Gold-silver Deposit, Republic of Korea (봉상 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The Bongsang gold-silver deposit consists of quartz veins that fill along the fault Bone within Cretaceous andesitic lapilli tuff. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I which can be subdivided into early and late depositional stages is main ore mineralization and stage II is barren. Stage I began with deposition of wall-rock alteration minerals and base-metal sulfides, and was deposited by later native silver, Ag-bearing tetrahedrite, polybasite and base-metal sulfides such like pyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 137 to $336^{\circ}C$ and from 0.0 to 10.6 wt.% NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, temperature and sulfur fugacity deduced mineral assemblages of late stage I are $<210^{\circ}C\;and\;<10^{-15.4}$ atm, respectively. Sulfur(3.4%o) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen{2.9%o, 10.3%o(quartz: 7.9%o, 8.9%o, calcite: 2.9%o, 10.3%o)}, hydrogen(-75%o) and carbon(-7.0%o, -5.9%o) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Fluid Inclusion and Sulfur Stable Isotope of Buckchang Deposit, Korea (북창광상의 유체포유물 및 황안정동위원소 연구)

  • Chung, Jae-Il;Kim, Seon-Young;Na, Choon-Ki;Lee, In-Sung;Ripley, E.M.
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.677-687
    • /
    • 1996
  • The Buckchang deposits which is located in the Ockcheon metamorphic zone, are emplaced along $N20-30^{\circ}E$ trending fissure sets. So it is a sort of fissure-filling ore deposits. The results of mineral paragenetic studies suggest two stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage. The silver-bearing sulfosalts occured as the Buckchang mine are mainly argentite and, minor of canfieldite, tetrahedrite, etc. Au:Ag ratios of the electrums show a highly limited range of nearly 1:1 in atomic %. The temperature, salinity and pressure of the Buckchang deposits estimated from fluid inclusion and sulfur isotope studies are as follows; stage I: $174{\sim}250^{\circ}C$, 0.35~4.01 NaCl eq. wt.%, 0.40~1.00 Kbar, stage II: $138{\sim}222^{\circ}C$, 1.9~8.4 NaCl eq. wt.%, 0.22~0.53 Kbar. The estimated oxygen and sulfur fugacity during stage I mineralization, based on phase relation of associated minerals, range from $10^{-39.7}{\sim}10^{-44.7}$ atm. and $10^{-13.4}{\sim}10^{-18.1}$ atm., respectively. All these evidences suggest that the Buckchang deposits are polymetallic epithermal ore deposits.

  • PDF