• Title/Summary/Keyword: metal structure

Search Result 3,334, Processing Time 0.042 seconds

A Design of Isotropic RFID Metal Tag Antenna with a PIFA Structure (PIFA구조를 가지는 등방성 RFID 메탈 태그 안테나)

  • Yun, Jung Mee;Chung, Jin Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.57-62
    • /
    • 2009
  • In this paper, we proposed the metal tag antenna of PIFA structure with an isotropic radiation pattern when tag attached the metal material. The antenna consist of antenna body, horizontal patch and ground, and inserted a substrate with high dielectric constant between the antenna body and ground in order to miniaturize the antenna size. The antenna body with symmetric structure is designed to produce an oppositely directed currents. The simulation shows the impedance bandwidth has 20 MHz (900 ~ 920 MHz) and the maximum radiation gain satisfy the -10 dBi and -15 dBi when the tag is in air and attach the metal material. Also, the proposed antenna operates with an isotropic radiation pattern due to satisfy the gain deviation lower than 6 dB, respectively.

  • PDF

A Simple Capacitive Sensor Array Based on a Metal-Insulator-Metal Structure

  • Lee, Hee-Ho;Choi, Jin-Hyeon;Ahn, Jung-Il;Kim, Chang-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • A simple array of metal-insulator-metal capacitive elements was proposed for a potential application in humidity sensing platforms. We fabricated meso-scale sensors with different sizes(large-size: $2.7{\times}2.7mm^2$ ; mid-size: $1.5{\times}1.5mm^2$ ; small-size: $0.7{\times}0.7mm^2$) and characterized the performance of each design. Polyimide films were utilized as a humidity-sensitive layer. Capacitance changes of the polyimide layer were measured with respect to water absorption. The device showed sensitivity in the full range of relative humidity (RH) with excellent linearity(correlation coefficient > 0.994). This array structure exhibits unique advantages including easy fabrication process, high batch productivity, and high structural compatibility with various substrate materials. It is anticipated that this device structure will be potentially useful in unique applications including mapping spatial humidity variations over a meso-scale area and implementing flexible humidity sensing element arrays.

Fracture properties and crack tip constraint quantification of 321/690 dissimilar metal girth welded joints by using miniature SENB specimens

  • Bao, Chen;Sun, Yongduo;Wu, Yuanjun;Wang, Kaiqing;Wang, Li;He, Guangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1924-1930
    • /
    • 2021
  • By using miniature SENB specimens, the fracture properties of the materials in the region of welded metal, 321 stainless steel heat affected zone, 690 alloy heat affected zone of 321/690 dissimilar metal girth welded joints were tested. Both the J-resistance curves and critical fracture toughness of the three different materials are affected by the crack size because of the effect of crack tip constraint. Groups of constraint corrected J-resistance curves of the three materials are obtained according to J-Q-M approach. The welded metals exhibit the best fracture resistance but the worst fracture resistance is observed in the material of 690 alloy heat affected zone.

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Development of Micro-stereolithography Technology using Metal Powder (금속 분말을 이용한 마이크로 광 조형 기술의 개발)

  • Lee J.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

Fabrication of high aspect ratio metallic structures for optical devices using UV-LIGA Process (광소자 응용을 위한 UV-LIGA 공정 기반의 MEMS 소자 제작)

  • Kang, H.K.;Chae, K.S.;Moon, S.O.;Oh, M.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1050-1053
    • /
    • 2002
  • This paper presents metal structure that is fabricated using UV-LIGA process with PMER N-CA3000. In order to fabricate metal structure with high aspect ratio, the systematic optimization method was adopted and then the structure of $36{\mu}m$ thick mold with aspect ratio 7:1 (trench) and $32{\mu}m$ thick nickel structure was obtained. This structure is applied to the fabrication of optical switch.

  • PDF

Advanced Pixel Structure for Higher Aperture Ratio in TFT-LCD

  • Kim, Jong-Hoon;Noh, Sang-Yong;Kang, Shin-Tack;Lee, Jong-Hwan;Choi, Kwang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.17-19
    • /
    • 2008
  • An advanced TFT-LCD structure was proposed to increase aperture ratio (AR). In this structure, metal layers formed below the data lines are used as light-blocking layers, achieving higher AR ratio than that of a conventional structure. Since average misalignment between the metal light-blocking layers and pixel electrodes is smaller than that of black matrixes on color filter glass, substantially less light-blocking areas are needed to achieve misalignment margin. The AR of the LCD panel fabricated by using proposed structure was enhanced by 18.7 % over that of the conventionally structured panel.

  • PDF

Thermal Behavior of the Layered Structure in Metal-dodecanesulfonate intercalation compounds, [M($H_2O$)$_6$](C$_12$H$_25$SO$_3$)$_2$.x$H_2O$ (M=Co, Cu) (도데칸술폰이 삽입된 금속 화합물, [M($H_2O$)$_6$(C$_12$H$_25$SO$_3$)$_2$.x$H_2O$ (M=Co, Cu)의 층상 구조의 열적 성질)

  • 허영덕;박성훈;전태현
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2000
  • The synthesis and characterization of intercalated compound of dodecanesulfornate into hydrated metal, [M($H_2$O)\ulcorner](C\ulcornerH\ulcorner$SO_3$)$_2$.$xH_2$O (M=Co, Cu) was presented. The compounds shows a layered structure which was determined by powder X-ray diffraction. Thermal behavior of the layered structure was investigated using thermal analysis, and FT-IR spectroscopy by varying the temperature. The increase in layer spacing of the products by increasing the temperature is also checked by X-ray diffraction. We can suggest three kinds of layered structure by varying the temperature, which is accompanied by changing the intercalated dodecanesulfonate from the monolayer to the bilayer structure or changing the tilt angle.

  • PDF