• Title/Summary/Keyword: metal plating

Search Result 333, Processing Time 0.027 seconds

A study on the recovery of chromium from metal-plating wastewater with spent catalyst (폐산화철촉매에 의한 도금폐수중 크롬이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • A large tons of spent iron oxide catalyst come from the Styrene Monomer(SM) production company. It is caused to pollute the land and underground water due to the high alkali contents in the catalyst by burying them in the landfill. In order to recycle the spent catalyst, a basic study on the recovery of chromium ion from metal plating wastewater with the spent catalyst was carried out. The iron oxide catalyst adsorbed physically $Cr^{+6}$ in the lower pH 3.0, that is the isoelectric point of the spent catalyst. It was found that the iron oxide catalyst reduced the $Cr^{+6}$ into Cr+3 by the oxidation of ferrous ion into ferric ion on the surface of catalyst, and precipitated as $Cr(OH)_3$ in the higher than pH 3.0. The $Cr^{+6}$ was recovered 2.0∼2.3g/L catalyst in the range of pH 0.5∼2.0, but it was recovered 1.5 g/L catalyst at pH 3.0 of wastewater. The recovery of Cr was increased as the higher concentration in the continuous process, but the flowrates were nearly affected on the Cr recovery.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Investigation of Ni/Cu Solar Cell Using Selective Emitter and Plating (선택도핑에 도금법으로 Ni/Cu 전극을 형성한 태양전지에 관한 연구)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Lee, Hae-Seok;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1010-1017
    • /
    • 2011
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. When fabricated Ni/Cu plating metallization cell with a selective emitter structure, it has been shown that efficiencies of up to 18% have been achieved using this technology.

고효율 저가형 결정질 실리콘 태양전지에 적용될 Ni/Cu 전극 및 Ni silicide 형성에 대한 연구

  • Kim, Min-Jeong;Lee, Su-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.260-260
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cell, If high-efficiency solar cells are to be commercialized, It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper are applied widely in various electronic manufactures as easily formation is available by plating. Ni is shown to be a suitable barrier to Cu diffusin as well as desirable contact metal to silicon. Nickel monosilicide has been suggested as a suitable silicide due to its lower resistivitym lower sintering temperature and lower layer stress than $TiSi_2$. In this paper, Nickel as a seed layer and diffusion barrier is plated by electroless plating to make nickel monosilicide.

  • PDF

Performance Evaluation of Ti-Al-N coated Endmill by Arc ton Plating (아크이온플레이팅에 의한 Ti-Al-N코팅 엔드밀의 성능평가)

  • 이상용;강명창;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.251-254
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining field. In this study, TiAIN single-layered and TiAIN/TiN double-layered coatings were applied to end-mill by an arc ion plating technique. Their performances were comparatively studied about cutting force, tool wear, tool life and surface roughness of workpiece under high speed cutting conditions. The TiAIN single-layer coated tool showed higher wear-resistance due to its higher hardness, while the TiAIN/TiN double-layer coated tool showed better performance for high metal removal, i.e., high fled per tooth condition due to its higher toughness. The surface roughness of the workpiece was not influenced by the wear amount of coated tools.

  • PDF

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (II) - Effect of Aldehyde Compounds and Polysulfide - (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (II) - aldehyde와 polysulfide첨가에 따른 영향 -)

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.687-690
    • /
    • 2010
  • The objective of this study is to investigate the effect of aldehyde compounds and ploysulfide as accelerating agents on removal of heavy metals and CN in plating wastewater. As a results of the experiments, the removal efficiency of cyanide using the formaldehyde type of aldehydes was the highest at pH 9. Next types were sodium formaldehyde bisulfite addut> paraldehyde> paraformaldehyde. Also, optimum pH and dosage for treating the residual heavy metals by using polysulfide were pH 9 and 30 mg/L, respectively. The removal efficiencies of cyanide, chromium, zinc and copper were above 96.7% at optimum condition.

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

On Electroless Plating and Double Sided Buried Contact Silicon Solar Cells

  • Ebong, A.U.;Kim, D.S.;Lee, S.H.;Honsberg, C.B.
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.568-575
    • /
    • 1996
  • The double sided buried contact(DSBC)silicon solar cell processing requires doping of the rear and front grooves with boron and phosphorus respectively. The successful electroless plating of these grooves with the appropriate metals haave been found to depend on the boron conditions for the rear fingers. However, an increased understanding of electroless plating has removed this restriction. Thus the DSBC cells using different boron conditions can be electrolessly plated with ease. This paper presents the recent work done on metallizing the double sided buried contact silicon solar cells with heavily doped boron grooves. The cells results indicate that, the heavier the boron grooves, the poorer the cell performance because of the probable higher metal contact recombination associated with boron grooves.

  • PDF

NEW PROGRESS IN TiN-BASED PROTECTIVE COATINGS DEPOSITED BY ARC ION PLATING

  • Huang, R.F.;Wen, L.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.265-275
    • /
    • 1999
  • Titanium nitride and related overlayers produced by arc ion plating (AIP) are applied as commercial coatings in world-wide scale since the middle of 80s. Due to the achievements of low temperature deposition (LTD), they begin now to be used as wear and corrosion-resistant coatings for machine parts, besides applications on cemented carbide and high speed steel cutting tools. On the other side, TiN can be now applied successfully to brass, Al-alloy, ZnAl alloy articles as decorative coating through LTD. Various nitrides, carbonitrides, borides and other refractory compounds, such as (Ti, Al)N, TiCN, CrN, are used as the coatings for special heavy-duty working conditions instead of TiN since 90s. More and more multilayer coatings are applied now substituting single layer ones. Duplex processes are under development.

  • PDF

Characteristic Evaluation According to the Surface Treatment Method of SKD61 Mold Steel for Aluminum Casting (알루미늄 주조용 SKD61 금형강의 표면처리 방법에 따른 특성 평가)

  • Choi, Se-Weon;Kim, Cheol-Woo;Kim, Yong-Ho;Yoo, Hyo-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.281-286
    • /
    • 2021
  • Arc ion plating (AIP), laser cladding, and nitriding are methods that can prevent mold damage or repair and create cracks and breakages on the die surface. The dissolution and soldering behavior of coated SKD61 by using arc ion plating, laser cladding, and nitriding was investigated. The structure of the coating was investigated as a function of deposition conditions by X-ray diffraction and the crystallographic orientation was determined using the texture factor. The TiAlN film deposited with AIP showed excellent corrosion resistance in the molten aluminum alloy at 680℃. In this paper, we have detailed the corrosion and mass loss phenomena associated with these steel-cast metal interactions.