• Title/Summary/Keyword: metal mines

Search Result 203, Processing Time 0.029 seconds

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

Possibility and Countermeasures of Subsidence according to Mining Method and Current Status in the Operation Mines (가행광산 채광방식과 현황에 따른 지반침하 가능성과 대책)

  • Jang, Myoung Hwan;Lee, Sang-eun
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.366-376
    • /
    • 2017
  • In this paper, we investigated the subsidence possibility and countermeasures according to the current mining method through investigation of the subsidence condition in operation mine. Most of the metal mine were broken, investigating to subsidence pattern of the Sink-hole. Coal mines are becoming more and more deep, investigating to Trough type subsidence patterns in existing mining areas. History of nonmetallic mines have not been developed for over 30 years, but large and small ground deformation problems have been investigated. Mining also has ground subsidence functionality due to time dependence by relying more heavily on empirical methods than technical methods. Therefore, it is necessary to carry out the various researches on systematic development method and prevention of subsidence of nonmetallic mines.

Russian Mineral Market Flow and Economic Direction for Securing Stable Resources (안정적 자원 확보를 위한 러시아 광물 시장 흐름 및 경제방향)

  • Eom, Nu Si A;Noh, Su;Haq, Muhammad Aneeq;Lee, Bin;Lim, Kyoung Mook;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.345-349
    • /
    • 2019
  • With increasing demand for resources worldwide, Korea has been negotiating with resource-holding countries to achieve conservation of energy resources. Among them, Russia is the third largest resource-producing and exporting nation in the world and has several resource materials such as nickel, platinum group metals, gold, and other reserves. As a result, there is growing interest in cooperation between Korea and Russia. The aim of this article is to summarize the current status of market flow of Russian energy resources as well as Russia's economic cooperation with Korea. Notably, South Korea needs to focus on investing in overseas mines for a stable supply of rare metals. Nevertheless, securing rare metals is a major task by understanding the flow and policy direction of Russian material mines.

Analiysis of Micro-structure of Cement Mortar Using Waste Fine Tailing with Admixture (폐광미를 시멘트 혼화재료로 이용한 경화체의 미세구조분석)

  • Yu, Seung-Wan;An, Yang-Jin;Mun, Kyoung-Ju;Park, Won-Chun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.743-747
    • /
    • 2005
  • In South Korea, about 900 metal mines have been abandoned, and about 88 million-t metal mine wastes have been discarded in recent years. The treatment of the tailings which are the main wastes in the abandoned metal mines becomes a social problem because they cause environmental pollution such as acidic waste water generation, groundwater contamination, and dust generation. Since almost whole quantities of the tailings have disposed by landfill now, the development of effective recycling methods for the tailings are strongly requested. It is expected that the fine tailings obtained by centrifugal separation process among the tailings can be utilized as admixture for cement. The purpose of this study is to evaluate the micro-structure of cement mortar admixed with fine tailing. Various admixtures were made of Fine tailings and 2 Types of OPC, fly-ash and blast furnace slag. The hydration reactivity of cement mortar with FT was examined by Porosity, XRD and SEM morphology analysis. The anolytical result about hardened hydrates shows that waste fine tailing help hydrates none densified due to it,s filling-space, These densified effect is concluded with improving the resistance to attack of cement mortar including waste fine tailing.

  • PDF

Urinary Arsenic Species Concentrations and Related Factors among Residents Living near Abandoned Metal Mines (폐금속광산 지역 주민들의 요 중 비소종별 농도와 관련요인 평가)

  • Surenbaatar, Ulziikhishig;Seo, Jeong-Wook;Kim, Byoung-Gwon;Lim, Hyoun-Ju;Chang, Jun-Young;Lee, Chul-Woo;Cho, Seong-Sik;Son, Hyun-Jin;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate urinary arsenic concentrations by arsenic species and to identify related factors among local residents near abandoned metal mines in Korea. Methods: Among the subjects of the Health Survey of Residents Near Abandoned Metal Mines for 2013-2017, 664 people were enrolled in this study. Urinary arsenic species analysis was performed using ICP/MS. Result: The geometric means (95% Confidence Interval) by urinary arsenic species were 0.15 (0.13-0.17) ㎍/L for AsIII, 0.64 (0.55-0.75) ㎍/L for AsV, and 1.21 (1.05-1.40) ㎍/L for inorganic arsenic. The geometric means of urinary MMA and DMA were 1.58 (1.35-1.86) ㎍/L and 77.93 (72.61-83.63) ㎍/L, respectively, and that of organic arsenic was 83.15 (77.80-88.88) ㎍/L. The concentration of inorganic arsenic in the group using groundwater as drinking water was 1.36 (1.13-1.64) ㎍/L, which was statistically significantly higher than the 1.00 (0.80-1.25) ㎍/L in the other drinking water groups. Regarding rice consumption, the concentration of inorganic arsenic in urine in the group whose consumption was more than half rice produced in the residential area was 1.32 ㎍/L, which was statistically significantly higher than that of the 1.12 ㎍/L for the group whose consumption was less than half. Conclusion: In the analysis of the factors affecting the urinary inorganic arsenic concentration of the residents of the abandoned metal mine area, the use of groundwater as drinking water and consumption of rice produced in the residential area were considered related factors.

Heavy Metal Contamination around the Abandoned Au-Ag and Base Metal Mine Sites in Korea (국내 전형적 금은 및 비(base)금속 폐광산지역의 중금속 오염특성)

  • Chon Hyo-Taek;Ahn Joo Sung;Jung Myung Chae
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.101-111
    • /
    • 2005
  • The objectives of this study we to assess the extent and degree of environmental contamination and to draw general conclusions on the fate of toxic elements derived from mining activities in Korea. 인t abandoned mines with four base-metal mines and four Au-Ag mines were selected and the results of environmental surveys in those areas were discussed. In the base-metal mining areas, the Sambo Pb-Zn-barite, the Shinyemi Pb-Zn-Fe, the Geodo Cu-Fe and the Shiheung Cu-Pb-Zn mine, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials, tailings and slag. Furthermore, agricultural soils, stream sediments and stream water near the mines were severely contaminated by the metals mainly due to the continuing dispersion downstream and downslope from the sites, which was controlled by the feature of geography, prevailing wind directions and the distance from the mine. In e Au-Ag mining areas, the Kubong, the Samkwang, the Keumwang and the Kilkok mines, elevated levels of As, Cd, Cu, Pb and Zn were found in tailings and mine dump soils. These levels may have caused increased concentrations of those elements in stream sediments and waters due to direct dis-charge downstream from tailings and mine dumps. In the Au-Ag mines, As would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and mobility of these metals would be enhanced by the effect of oxidation. According to sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. As application of pollution index (PI), giving data on multi-element contamination in soils, over 1.0 value of the PI was found in soils sampled at and around the mining areas.

Assessment of Water Pollution by the discharged water of the Abandended Mine

  • Kim, Hee-Joung;Yang, Jae-E.;Lee, Jai-Young;Park, Beang-Kil;Choi, Sang-Il;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.167-174
    • /
    • 2004
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. AMD and waste effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of total dissolved solid (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. These parameters of AMD and effluents were considered to be highly polluted as compared to those in the main stream area of the Okdong river and be major pollutants for water and soil in tile downstream area. Pollution indices of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailing dams and coal mines flowed into main stream were in tile ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9 These results indicated that mining wastes such as AMD and effluents from the closed mines were tile major source to water pollution at the Okdong stream areas.

  • PDF

Environmental Pollution and Reclamation in the Abandoned Mines in Korea (국내 폐 광산 환경오염 실태 및 처리 현황)

  • Cheong Young-Wook;Min Jeong-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.75-89
    • /
    • 2001
  • There are 334 coal mines and about 900 metal mines abandoned. The environmental problems such as acid mine drainage from adits etc. and the subsidence has occurred in the abandoned mines. In addition, soil has been contaminated by tailings. According to analysis of mine drainages, some of them from adits in the abandoned coal and metallic mines were acidic and polluted by heavy metals. Especially, water quality of coal mine drainages were different by areas. Treatment of mine drainage by conventional chemical treatment has the drawback because the operating cost is very expensive. The treatment system used in mine drainage is the natural treatment system such as anoxic limestone drain in adits and the constructed wetland. The method of reclamation for abandoned waste rocks and tailings impoundments are mainly landfilling.

  • PDF

Metal Mines and Supply-Demand of Metal Commodities in Korea (한국의 금속광산과 주요 금속자원수급)

  • 김영인
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.209-212
    • /
    • 2003
  • 한국의 금속광산은 일제시대에 금광산을 중심으로 본격적으로 개발되어 1943년 산금령시에 1,522개 광산이 가행되었다. 최근까지 1990개 광산이 개발된 것으로 알려지고 있으며 2002년 말 현재 7개 광산만이 가행되었다. 1960년대까지 국내 광산은 금, 은 동, 연아연, 철, 중석 등을 중심으로 활발히 가행되어 주요 외화 획득원으로 중요한 위치를 차지하였다. 그 이후 산업발전에 따라 수요는 증가세를 보인 반면 가행광산과 생산량은 매년 감소하여 최근 금속광물자원 자급도는 0.21%로 미미한 수준이며 수요의 대부분을 해외에 의존하고 있다. (중략)

  • PDF