• Title/Summary/Keyword: metal melting

Search Result 489, Processing Time 0.025 seconds

Recyclability Analysis of Slags Obtained at Gasification and Incineration-Melting Conditions (가스화와 소각 용융 조건에서 생성된 슬랙의 재활용성 분석)

  • 윤용승;이계봉
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.82-91
    • /
    • 2004
  • In order to utilize inorganic components in coal and wastewater sludge as an environmentally stable material, slag-forming is considered as one of the suitable methods better than producing as an ash. Coal slag that was produced by gasification as well as the slag made from wastewater sludge by incineration or melting process have been analyzed with the viewpoint of recyclability. Slags produced by water quenching exhibited a cracked shape that has a size of few millimeters with sharp edges. Slags contain the unburned carbon content below 0.15% and expose mostly amorphous structural characteristics. Analysis results in the extraction of heavy metal compounds demonstrate that both slags from coal and wastewater sludge could be utilized as a safe recycle material even with a Japanese environmental regulation that is ten times more stringent than the current Korean standard. Slags from coal and wastewater sludge show significant differences in contents of each heavy metal compound. Since the future trend of environmental regulation shifts to the control of total content for each heavy metal compound, proper mixing of slags that contain different heavy metal contents might be an option for manufacturing recycle materials.

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Liquid Phase Diffusion Bonding Procedure of Rene80/B/Rene80 System -Liquid Phase Diffusion Bonding Using B Powder Coating Method (Rene80/B/Rene80계의 액상확산 접합과정 -B분말 도포법을 이용한 액상확산접합)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.132-138
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using boron(B) as an insert material, where B has high diffusivity and higher melting point as an insert material. Bonding procedure and bonding mechanism of Rene80/B/Rene80 joint were investigated. As results, liquid metal was produced by solid state reaction between base metal and insert material on bonding zone. The liquid metal was produced preferentially at the grain boundary. Except for production of liquid metal, other bonding procedure was nearly same as TLP(Transient Liquid Phase) bonding. Bonding time, however, was reduced compared to prior result of TLP bonding. By bonding S.4ks at l453K, Ren80/B/Rene80 joint was isothermally solidified and homogenized where thickness of insert material was 7.5.mu.m.

  • PDF

Property about Extraction of Metal Ion in the Synthesized Crown Ether Model Compounds (합성한 crown ether 모델 화합물에서 금속이온의 추출 특성 연구)

  • Lee, Yong-Hee;Suh, Myung-Gyo;Roh, Jong-Su;Lee, Kook-Eui;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 2003
  • To extract alkali metal ions and heavy metal ions, search for crown ether model compounds (4a-b, 5a-b, 6a-b) bearing side arm has led to achieve in 5~6 steps starting from 2,6-dimethylaniline. The determination of structure in their compound derivatives were on the basis of melting point and nuclear magnetic resonance spectroscopy. In the solvent extraction of metal ions from the synthesized derivatives, we observed that silver ion has only high selectivity for synergistic ligation of crown ether.

  • PDF

Seam Welding of Amorphous Metal with Nd:YAG laser (Nd:YAG 레이저를 이용한 비정질재료의 심(seam) 용접)

  • 이건상
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.45-51
    • /
    • 2000
  • In this paper, the possibilities and the limits of the laser seam welding were studied to utilize the advantageous properties of amorphous metal foils. For the conventional welding method, the high heat transfer makes the crystallized zone of the work material unavoidable. The laser is able to weld the amorphous metal without a crystallized zone, because heat transfer is limited within a very small restricted volume. The crystallized zone is restricted in the neighbor of welding spot and not in the melting area. This can be proved directly by the etching and indirectly by the tensile shear test, micro hardness test and bending test. The overlapping of welding bead could form the formation of wider and thicker amorphous zone.

  • PDF

Nano-Scale Observation of Nanomaterials by In-Situ TEM and Ultrathin SiN Membrane Platform

  • An, Chi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.657-657
    • /
    • 2013
  • In-situ observations of nano-scale behavior of nanomaterials are very important to understand onthe nano-scale phenomena associated with phase change, atomic movement, electrical or optical properties, and even reactions which take place in gas or liquid phases. We have developed on the in-situ experimental technologies of nano-materials (nano-cluster, nanowire, carbon nanotube, and graphene, et al.) and their interactions (percolation of metal nanoclusters, inter-diffusion, metal contacts and phase changes in nanowire devices, formation of solid nano-pores, melting behavior of isolated nano-metal in a nano-cup, et al.) by nano-discovery membrane platform [1-4]. Between two microelectrodes on a silicon nitride membrane platform, electrical percolations of metal nano-clusters are observed with nano-structures of deposited clusters. Their in-situ monitoring can make percolation devices of different conductance, nanoclusters based memory devices, and surface plasmonic enhancement devices, et al. As basic evidence on the phase change memory, phase change behaviors of nanowire devices are observed at a nano-scale.

  • PDF

Active Metal Brazing Applied to Joining of ZrO2-Ti Alloy (ZrO2-Ti합금의 활성금속 브레이징)

  • Kee, Se-Ho;Park, Sang-Yoon;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.38-43
    • /
    • 2012
  • In this study, active metal brazing methods for $ZrO_2$ and Ti alloy were discussed. To get a successful metal-ceramic bonding, various factors (melting temperature, corrosion, sag resistance, thermal expansion coefficient etc. of base materilas and filler metal) should be considered. Moreover, in order to clarify bonding between the metal and ceramic, the mechanism of the interfacial structure of the joints should be identified. The driving force for the formation of metal and ceramic interfaces is the reduction of the free energy which occurs when their contact becomes complete. Interfacial bonding depends on the material combinations and the bonding processes. This study describes the bonding between ceramic and metal in an active metal brazing.

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process (브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향)

  • Kim, Yong-Ho;Yoo, Hyo-Sang;Na, Sang-Su;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.