• Title/Summary/Keyword: metal ion effect

Search Result 511, Processing Time 0.033 seconds

Dielectric properties of Pt/PVDF/Pt modified by low energy ion beam irradiation

  • Sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.110-110
    • /
    • 1999
  • Polyvinylidenefluoride (PVDF) is most used in piezoelectric polymer industry. Electrode effect on the electrical properties of PVDF has been investigated. al has been used due to fair adhesion for PVDF. Work function of metal plays an important role on the electrical properties of ferroelectrics for top and /or bottom electrode. However, Al has much lower work function than Pt or Au and so leakage current of Al/PVDF/Al may be large. Pt or Au has not been used for electrode of PVDF system due to poor adhesion. PVDF irradiated by Ar+ ion beam with O2 environment takes good adhesion to inert metal. Contact angle of PVDF to triple distilled water was reduced from 75$^{\circ}$ to 31$^{\circ}$ at 1$\times$1015 Ar+/cm2. Working pressure was 2.3$\times$10-4 Torr and base pressure was 5$\times$10-6 Torr. Pt was deposited by ion beam sputtering and thickness of pt film was about 1000$\AA$. in previous study, enhancing adhesion of Pt on PVDF was shown. in this study, effect of electrode on PVDF will be represented.

  • PDF

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

A Thermodynamic Investigation into the Stabilization of Poly(dA).[poly(dT)]2 Triple Helical DNA by Various Divalent Metal Ions

  • Choi, Byung-Hoon;Yeo, Ga-Young;Jung, Jin-Ah;Lee, Bae-Wook;Han, Sung-Wook;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2691-2696
    • /
    • 2009
  • Effects of representative group II and transition metal ions on the stability of the $poly(dA){\cdot}[poly(dT)]_2$ triplex were investigated by the van’t Hoff plot constructed from a thermal melting curve. The transition, $poly(dA){\cdot}[poly(dT)]_2\;{\rightarrow}\;poly(dA){\cdot}poly(dT)\;+\;poly(dT)$, was non-spontaneous with a positive Gibb’s free energy, endothermic (${\Delta}H^{\circ}$ > 0), and had a favorable entropy change (${\Delta}S^{\circ}$ > 0), as seen from the negative slope and positive y-intercept in the van’t Hoff plot. Therefore, the transition is driven by entropy change. The $Mg^{2+}$ ion was the most effective at stabilization of the triplex, with the effect decreasing in the order of $Mg^{2+}\;>\;Ca^{2+}\;>\;Sr^{2+}\;>\;Ba^{2+}$. A similar stabilization effect was found for the duplex to single strand transition: $poly(dA){\cdot}poly(dT)\;+\;poly(dT)\;→\;poly(dA)\;+\;2poly(dT)$, with a larger positive free energy. The transition metal ions, namely $Ni_{2+},\;Cu_{2+},\;and\;Zn_{2+}$, did not exhibit any effect on triplex stabilization, while showing little effect on duplex stabilization. The different effects on triplex stabilization between group II metal ions and the transition metal ions may be attributed to their difference in binding to DNA; transition metals are known to coordinate with DNA components, including phosphate groups, while group II metal ions conceivably bind DNA via electrostatic interactions. The $Cd_{2+}$ ion was an exception, effectively stabilizing the triplex and melting temperature of the third strand dissociation was higher than that observed in the presence of $Mg_{2+}$, even though it is in the same group with $Zn_{2+}$. The detailed behavior of the $Cd_{2+}$ ion is currently under investigation.

SIMS Depth Profiling Analysis of Cl in $TiCl_4$ Based TiN Film by Using $ClCs_2^+$ Cluster Ions

  • Gong, Su-Jin;Park, Sang-Won;Kim, Jong-Hun;Go, Jung-Gyu;Park, Yun-Baek;Kim, Ho-Jeong;Kim, Chang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.161-161
    • /
    • 2012
  • 질화티타늄(Titanium Nitride, TiN)은 화학적 안정성이 우수하고, N/Ti 원소 비율에 따라 열전도성 및 전기전도성이 변화하는 특성을 가지고 있어서 Metal Insulator Silicon (MIS) 나 Metal Insulator Metal (MIM) capacitor의 metal electrode 물질로 적용되고 있다. $TiCl_4$$NH_3$ gas를 이용하여 $500^{\circ}C$ 이상의 고온 조건에서 Chemical Vapor Deposition (CVD) 법으로 TiN 박막을 증착하는 방식이 가장 널리 사용되고 있으나, TiN 박막 내의 Chlorine (Cl) 원소가 SiO2 두께와 누설전류 밀도를 증가시키는 요인으로 작용하므로 Cl의 거동 및 함량 제어를 통한 전기적인 특성의 향상 평가가 요구되고 있다[1-3]. 본 실험에서는 $SiO_2$ 위에 TiN을 적층 한 구조에서 magnetic sector type의 Secondary Ion Mass Spectrometry (SIMS)를 이용하여 Cl 원소의 검출도 개선 방법을 연구하였다. 일반적인 $Cs^+$ 이온을 이용하여 $Cl^-$ 이온을 검출할 경우에는 TiN 하부에 $SiO_2$가 존재함에 따른 charging effect와 mass interference가 발생되는 문제점이 관찰되었다. 이를 개선하기 위해 Cl과 Cs 원소가 결합된 $ClCs^+$ cluster ion을 검출하는 방법을 시도하였으나, Cl- 이온 검출 방식에 비해 오히려 낮은 검출도를 나타내었으나 Cl 원소가 속하는 halogen 족 원소의 높은 전자 친화도 특성을 이용한 $ClCs_2^+$ cluster ion을 검출하는 방법[4]을 적용한 경우에는 $ClCs^+$ 방식에 비해 검출도가 3order 개선되는 결과를 확보하였으며, 이 결과를 토대로 Cl dose ($atoms/cm^2$) 와 Rs (ohm/sq) 간의 상관 관계에 대해 고찰하고자 한다.

  • PDF

A Study on The Surface Roughness Of Metal Workpieces Machined by Ion Sputtering (이온 스파터 가공에 의하 금속표면의 표면거칠기에 관한 연구)

  • 한응교;노병옥;박재민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.747-754
    • /
    • 1990
  • Since Ion sputter machining can perform removing processing in atom or molecule units in vacuum state, it has the merit that high precision processing is possible. In this study, therefore, the effect of incidence ion beam is certified to processing amount and surface roughness when longtimed processing is applied. As a result, processing amount is made almost constant with time and the best processing condition is achieved when the incidencial angle of ion is 55.deg.. In addition, processing time for the good surface roughness is different respectively to the quality of material and longtimed processing has some defect for achieving good surface roughness.

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials (나노물질을 이용한 이온교환막의 성능 향상)

  • Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.315-324
    • /
    • 2023
  • Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.

Nickel Tolerance and the Complexing Role of Histidine in Raphanus sativus (무 유식물에서의 니켈내성과 히스티딘의 작용)

  • Kim, Tae-Yun;Hong, Jeong-Hui
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.711-719
    • /
    • 2004
  • The effect of nickel (Ni) on growth and some tolerance strategies with regard to heavy metal tolerance mechanism was investigated in radish (Raphanus sativus) seedlings. The protective effect of histidine on nickel stress conditions was also monitored. The seedling growth decreased with an increase in metal concentrations. The inhibitory effect was more pronounced in the root elongation than in the shoot elongation. Increasing Ni supply showed a progressive increase of Ni concentrations in the roots and shoots. Ni content was higher in the shoots than in the roots. In the presence of nickel, radish exhibited an antioxidative defense mechanism, as evidenced by the elevated malondialdehyde(MDA), showing that nickel is an efficient inducer of lipid peroxidation. Exposure of radish to elevated concentrations of nickel was accompanied by an increase in the proline content. Supplemental histidine in the presence of Ni ameliorated metal-induced growth inhibition and lipid peroxidation. Combinations of Ni and histidine resulted in a significant decline in proline content compared with Ni stress alone, indicating that histidine may provide protection against the adverse effect of Ni stress. From the results it is suggested that histidine is an efficient chelator by complexing metal ion within the plant and may playa role in nickel tolerance implicated in metal detoxification.

Effect of Mordant Concentration and Chitosan Treatment on Dyeing Property (꼭두서니에 의한 면직물의 염색시 매염제와 키토산 처리가 색상에 미치는 영향)

  • Choi, Jeong-Im;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.3
    • /
    • pp.283-288
    • /
    • 2003
  • Large quantity of metal mordant in natural dyeing has been used. For environmental reason, there is a need to reduce the amount of metal mordant and suggest the optimum amount of metal mordant in dyeing process. In this study, the relationship between mordant concentration and dyeing property was investigated. Various metal mordant concentrations of AI, Cu, Fe, Sn, were studied (from 1 to 5%). After treatment of mordant on cotton fabric, the concentration of metal ion in used mordant solution was quantified. There was no significant difference of the tone of color in mordant concentration from 1% to 5%, Therefore, there is no need to increase mordant concentration over 1%. chitosan treated cotton fabric showed a significant increase in dyeing affinity compared to untreated cotton fabric (the value of ${\Delta}E$ was 20). chitosan increased dye affinity significantly in the presence of mordant. It can be suggested that chitosan itself can replace metal mordants in the future.

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

The Effect of Oxygen and Chlorine Dioxide during Pulp Bleaching - The Effect of Hydroxyl Radical and Metal Ion - (펄프 표백시 산소와 이산화염소의 영향 - 수산기 라디칼의 생성과 금속이온의 영향-)

  • Yoon, Byung-Ho;Jo, Byoung-Muk;Lee, Myoung-Ku
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.153-165
    • /
    • 1997
  • Hydroxyl radicals were detected and their qualitative yields were estimated by using chemiluminescence method and $\gamma$-irradiation technique in oxygen or chlorine dioxide radicals bleaching conditions. The correlation of hydroxyl radical formation and lignin model(Apocynol) or carbohydrate model($\alpha$-D-glucopyranose and methyl-$\beta$-D-glucopyranoside) degradation was studied in the presence of metal ion or without metal ion. The results showed that the presence of metal ions efficiently affected the formation of hydroxyl radicals in oxygen bleaching process, in the order of $Cu^{2+}$ > $Mn^{2+}$ > $Mg^{2+}$ > $Fe^{2+}$, and these metal gave also rise to the degradation of carbohydrate. But it was found that the addition of $100{\mu}m\;Mg^{2+}$ gave an efficient protection against carbohydrate degradation and suppressed the hydroxyl radical formation under oxygen bleaching conditions. And the presence of $Cu^{2+}$ had a detrimental effect on the stability of carbohydrates, whereas the addition of $3{\mu}m\;Mn^{2+}$ surprisingly had a small protective effect on methyl--$\beta$-D-glucopyranoside. In the $ClO_2$ radical bleaching conditions the hydroxyl radical expected to generate from water or substrates was not detected in the presence of metals.

  • PDF