• Title/Summary/Keyword: metal insert

Search Result 151, Processing Time 0.027 seconds

A study on the development of Ti-Cu-Ni-Si insert metal for Ti alloys (Ti합금 접합용 Ti-Cu-Ni-Si계 삽입금속의 개발에 관한 연구)

  • 김경미;우인수;강정윤;이상래
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 1996
  • The purpose of this study is to develope an insert metal which can be brazed at lower temperature than the conventionally used insert metal and provide higher strength joint than base metal. In the review of binary phase diagram concerning Ti, Cu and Ni resulted in the discovery of Si having eutectic composition with them. The microstructure and the distribution of elements in reaction zone between CP Ti and insert metal were investigated by Optical Microscopy, SEM/EDX, EPMA, X-RAY. The newly developed insert metal is Ti-15wt%Cu-18wt%Ni-2wt%Si, which can yield the lower brazing temperature(1183K) compared with the conventional Ti-Cu-Ni system insert metal. The joints with this insert metal had tensile strength of 385MPa in the bonding temperature range of 1183K to 1243K.

  • PDF

A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy (2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding (액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

Microstructure of the Brazed Joint for LRE Injector (액체로켓엔진용 인젝터 접합부의 미세조직)

  • 남대근;홍석호;이병호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.87-89
    • /
    • 2004
  • Brazing is an indispensable manufacturing technology for liquid rocket engine. In this study, for LRE injector, stainless steel 316L was used of base metal and Ni based MBF-20 of insert metal. The brazing and diffusion was carried out under various conditions. There are solid phase and. residual liquid phase in the brazed joint. With increment of holding time, the amount of solid phase increased and the elements of base metal and insert metal compositionally graded. Boron diffused from insert metal came into base metal and made boride with Cr and Mo at the brazed joint of base metal and insert metal.

  • PDF

Computer-Aided Alloy Design of Insert Metal for Transient Liquid Phase Bonding of High Aluminum Ni-base Superalloys

  • Nishimotd, Kazutoshi;Saida, Kazuyoshi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.803-808
    • /
    • 2002
  • A computer-aided alloy-designing technique to develop the insert metal for transient liquid phase (TLP) bonding was applied to high aluminum Ni-base superalloys. The main procedure of a mathematical programming method was to obtain the optimal chemical composition through rationally compromising the plural objective performances of insert metal by a grid-search which involved data estimation from the limited experimental data using interpolation method. The objective function Z which was introduced as an index of bonding performance of insert metal involved the melting point, hardness (strength), formability of brittle phases and void ratio (bonding defects) in bond layer as the evaluating factors. The contour maps of objective function Z were also obtained applying the interpolation method. The compositions of Ni-3.0%Cr-4.0%B-0.5%Ce (for ${\gamma}$/${\gamma}$/${\beta}$ type alloy) and Ni3.5%Cr-3.5%B-3%Ti (for ${\gamma}$/${\gamma}$ type alloy) which optimized the objective function were determined as insert metal. SEM observations revealed that the microstructure in bond layers using the newly developed insert metals indicated quite sound morphologies without forming microconstituents and voids. The creep rupture properties of both joints were much improved compared to a commercial insert metal of MBF-80 (Ni-15.5%Cr-3.7%B), and were fairly comparable to those of base metals.

  • PDF

Process Planning for Insert Metal of Weather Strip Using High Speed Rolling-Type (고속 압연방식을 이용한 Weather strip 용 Insert metal 공정설계)

  • Park, Ji-Su;Lee, Hyun-Woo;Jung, Sung-Yuen;Bae, Jun-Ho;Kim, Hwa-Young;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1279-1287
    • /
    • 2011
  • Weather strip is a functional component of a car body and doors for leaking protection, isolating outside noise and vibration reduction. Insert metal inserted to the weather strip plays a key role to keep the shape of the weather strip and increase its strength. Insert metal is mainly produced by a press process, which has low productivity and 40% material loss due to the scraps. To solve the problems, a high-speed rolling process for manufacturing the insert metal of weather strip is being attempted. In this study, the insert metal is manufactured by a high-speed rolling process, and its process variables: reduction, relative velocity of rollers and the number of passes, are optimized by using the FEA and the actual tests. The prototype was manufactured by the optimal process.

A Study on Mechanical and Electrical Properties at Interfaces Between Epoxy and ifs Molded Metal (에폭시 매입금구 표면거칠기에 따른 전기적, 기계적 특성 연구)

  • 김수연;하영길;이성진;김영성;박완기;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.226-229
    • /
    • 1999
  • Epoxy compound has been used as insulation material in electrical equipment for a long time because of its excellent electrical, mechanical and chemical properties. Nowdays, becoming higher voltage system, the properties of interface between epoxy and metal insert become more important. The breakdown voltage of epoxy compound for electric material is variable according to the surface roughness of metal insert. Generally, with metal insert sanding, the adhesion strength is enhanced and the breakdown strength is reduced. But in this study, we knew that the adhesion strength became enhanced but the breakdown strength didn\`t reduced with metal insert sanding. So in this study sanding. So in this study, we suggest the optimum interface condition by adjusting the surface roughness.

  • PDF

Numerical Analysis of the Filling Stage in Insert Injection Molding of Microfluidic Chip with Metal Electrodes (금속 전극을 포함한 미세유체 칩의 인서트 사출성형 충전 공정 해석)

  • Lee, Bong-Kee;Na, Seung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.969-976
    • /
    • 2015
  • In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.

Characteristics of Liquid Phase Diffusion Bonded Joints Using Newly Developed Ni-3Cr-4Si-3B Insert Metal of Heat Resistant Alloy (신개발 Ni-3Cr-4Si-3B 삽입금속으로 액상확산접합한 내열주강 접합부의 특성)

    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.62-67
    • /
    • 2000
  • Metallurgical characteristics of bonded region and high temperature mechanical properties of heat resistant alloy, Fe-35Ni-26Cr during liquid phase diffusion bonding were investigated employing AM17 insert metal. The insert metal for bonding, AM17 was newly developed Ni-base metal using interpolation method. Bonding of specimens were carried out at 1,403~1,463K for 600s in vacuum. The microconstituents in the bonded interlayer disappeared in the bonding temperature over 1,423K. The microstructures, alloying elements and hardness distribution in the base metal. The tensile strength and elongation of the joints at elevated temperatures were the same level as one of the base metal in the bonding temperature over 1,423K. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Development of Insert Metals for the Transient Liquid Phase Bonding in the Directional Solidified Ni Base Super Alloy GTD 111 (일방향응고 니켈기 초내열합금 GTD111에서 천이 액상확산 접합용 삽입금속의 개발에 관한 연구)

  • Lee, Bong-Keun;Oh, In-Seok;Kim, Gil-Moo;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • On the Transient Liquid Phase Bonding (TLPB) phenomenon with the MBF-50 insert metal at narrow gap (under 100), it takes long time for the bonding and the homogenizing. Typically, isothermal solidification is controlled by the diffusion of depressed element of B and Si. However, the amount of B and Si in the MBF-50 filler metal is large. This is reason of the long bonding time. Also, the MBF-50 filler metal did not contained Al and Ti which are ${\gamma}^{\prime}$ phases former. This is reason of the long homogenizing time. From the bonding phenomenon with the MBF-50 insert metal, we search main factors on the bonding mechanism and select several insert-metals for using the wide-gap TLPB. New insert-metals contained Al and Ti which are ${\gamma}^{\prime}$ phases former and decrease the B then the MBF-50. When the new insert-metal was used on the TLPB, the bonding time was decreased about 1/10 times and homogenizing heat treatment was no needed. In spite of the without homogenizing, the volume fraction of ${\gamma}^{\prime}$ phases in the boned interlayer was equal to homogenizing heat treated specimen which was TLPB with the MBF-50. Finally, the new insert metal named WG1 for the wide-gap TLPB is more efficient then the MBF-50 filler metal without decreasing the bonding characteristic.