• Title/Summary/Keyword: metal hydroxide

Search Result 209, Processing Time 0.033 seconds

Leucite Synthesis from Solid-State Sintering (고상법에 의한 Leucite 합성)

  • Yoon, Dong-Sup;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.282-286
    • /
    • 2005
  • Leucite crystal has been utilized for dental porcelain due to its high thermal expansion coefficient to meet its counter metal side. Many industrial applications of leucite from the incongruently melting of potassium feldspar are used and its minimum temperature of crystallization is $1150^{\circ}C$. This study aimed to get leucite crystal from lower temperature through congruently melting, and the starting materials are taken from K-feldspar mainly, and aluminum hydroxide and potassium carbonate are additionally supplied to meet stoichiometry of leucite. We report that the leucite crystal can be synthesized in congruently melting from the temperature $950^{\circ}C$ through solid-state sintering with k-feldspar, potassium carbonate and aluminum hydroxide.

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

Ex-situ Remediation of a Contaminated Soil of Fe Abandoned Mine using Organic Acid Extractants (유기산 추출에 의한 철 폐광산 오염토양의 복원)

  • 정의덕;강신원;백우현
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • A study on the remediation of heavily for ion contaminated soils from abandoned iron mine was carried out, using ex-situ extraction process. Also, oxalic acid as a complex agent was evaluated as a function of concentration, reaction time and mixing ratio of washing agent in order to evaluate Fe removability of the soil contaminated from the abandoned iron mine. Oxalic acid showed a better extraction performance than 0.1N-HCl, i.e., the concentrations of Fe ion extracted from the abandoned mine for the former at uncontrolled pH and the latter were 1,750 ppm and 1,079 ppm, respectively. The optimum washing condition of oxalic acid was in the ratio of 1:5 and 1:10 between soil and acid solution during l hr reaction. The total concentrations of Fe ion by oxalic acid and EDTA at three repeated extraction, were 4,554 ppm and 864 ppm, respectively. The recovery of Fe ions from washing solution was achieved, forming hydroxide precipitation and metal sulfide under excess of calcium hydroxide and sodium sulfide. In addition, the amounted of sodium sulfide and calcium hydroxide for the optimal revovery of Fe were 15g/$\ell$ and 5g/$\ell$ from the oxalic acid complexes, respectively.

  • PDF

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures (층상 이중 수산화물 나노물질의 성장 제어기술 연구동향)

  • Jeon, Chan-Woo;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.514-522
    • /
    • 2018
  • Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.

Silver (I)- Schiff-base complex intercalated layered double hydroxide with antimicrobial activity

  • Barnabas, Mary Jenisha;Parambadath, Surendran;Nagappan, Saravanan;Chung, Ildoo;Ha, Chang-Sik
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.373-383
    • /
    • 2021
  • In this work, silver nitrate complexes of sulfanilamide-5-methyl-2-thiophene carboxaldehyde (SMTCA) ligand intercalated Zn/Al-layered double hydroxide [Ag-SMTCA-LDH] were synthesized for the potential application as an antimicrobial system. The SMTCA ligand was synthesized by reacting sulfanilamide and 5-methyl-2-thiophene carboxaldehyde in methanol and further complexation with silver nitrate metal ions [Ag-SMTCA]. The structural analyses of synthesized compounds confirmed an intercalation of Ag-SMTCA into Zn/Al-NO3-LDH by flake/restacking method. SMTCA, Ag-SMTCA and Ag-SMTCA-LDH were characterized by 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It was found that Ag-SMTCA-LDH exhibited good antimicrobial activity against both gram-positive (Bacillus subtilis, [B. subtilis], Staphylococcus aures, [S. aureus]) and gram-negative (Escherichia coli, [E. coli], Pseudomonas aeruginosa [P. aeroginosa]) bacteria as well as excellent antioxidant activity.

Synthesis of iron oxide powders by hydrothermal process

  • Bae, Dong-Sik;Park, Chul-Won;Gam, Jig-Sang;Han, Kyong-Sop
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.176-179
    • /
    • 2001
  • Iron oxide powders were prepared under high temperature (up to $175^{\circ}C$) and pressure conditions( up to 129 pasi) by precipitation from metal nitrates with aqueous potassium hydroxide. Various types of iron oxide powders were obtained at different conditions. The size and the shape of the particles can be controlled as afunction of starting solution pH. The average particles size of the synthesized iron oxide powders increased, the particle shapes of the powders became fibrous, and the crystalline phase of the powder changes from iron oxide to iron hydroxide with increasing solution pH. The effects of synthesis parameters are discussed.

  • PDF

Catalytic Effects of Barium Carbonate on the Anodic Performance of Solid Oxide Fuel Cells

  • Yoon, Sung-Eun;Ahn, Jae-Yeong;Park, Jong-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.350-355
    • /
    • 2015
  • To develop ceramic composite anodes of solid oxide fuel cells without metal catalysts, a small amount of barium carbonate was added to an $(La_{0.8}Sr_{0.2})(Cr_{0.5}Mn_{0.5})O_3(LSCM)$ - YSZ ceramic composite anode and its catalytic effects on the electrode performance were investigated. A barium precursor solution with citric acid was used to synthesize the barium carbonate during ignition, while a barium precursor solution without citric acid was used to create hydrated barium hydroxide. The addition of barium carbonate to the ceramic composite anode caused stable fuel cell performance at 1073 K; this performance was higher than that of a fuel cell with $CeO_2$ catalyst; however, the addition of hydrated barium hydroxide to the ceramic composite anode caused poor stability of the fuel cell performance.

Different Adsorption Behavior of Rare Earth and Metallic Ion Complexes on Langmuir Monolayers Probed by Sum-Frequency Generation Spectroscopy

  • Sung, Woongmo;Vaknin, David;Kim, Doseok
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2013
  • Adsorption behavior of counterions under a Langmuir monolayer was investigated by sum-frequency generation (SFG) spectroscopy. By comparing SFG spectra of arachidic acid (AA) Langmuir monolayer/water interface with and without added salt, it was found that the simple trivalent cation $La^{3+}$ adsorbed on AA monolayer only when the carboxylic headgroups are charged (deprotonated), implying that counterion adsorption is induced by Coulomb interaction. On the other hand, metal hydroxide complex $Fe(OH)_3$ adsorbed even on a charge-neutral AA monolayer, indicating that the adsorption of iron hydroxide is due to chemical interaction such as covalent or hydrogen bonding to the headgroup of the molecules at the monolayer.

Some Thiosemicarbazide Derivatives as Corrosion Inhibitors for Aluminium in Sodium Hydroxide Solution

  • Moussa, M.N.;Fouda, A.S.;Taha, F.I.;Elnenaa, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.191-195
    • /
    • 1988
  • The effect of some thiosemicarbazide derivatives on corrosion of aluminium in 2M sodium hydroxide has been studied using thermometric, weight loss and hydrogen evolution techniques. The rate of the corrosion depends on the nature of the inhibitor and its concentration, heated of hydrogenation, mode of interaction with the metal surface and formation of metallic complexes. The compounds are weakly adsorbed on the surface of aluminium and form a monolayer of the adsorbate. Values of the Arrhenius activation energies indicate agreement with those obtained for an activation controlled process.