• Title/Summary/Keyword: metal foil

Search Result 155, Processing Time 0.024 seconds

An Introduction to the Ground Water Model Test (지하수 model에 관한 모형시험방법)

  • 김주욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1301-1305
    • /
    • 1967
  • Ground water flow can be studied with model test. Model test of ground water works are necessary for economic and safe design of the works. Also influence of the ground water flow to the durability and safety of hydraulic structures can be studied with this model. a. Sand model ; Water flow through porous media is the principle of sand model. Darcy's formula is the basic equation, $q=k{\frac{dh}{ds}}^{\circ}. The effect of the ground water flow on the grain system itself is represented with this model only. b. Hele-Shaw model ; In this model use is made of the viscous flow analogy. Viscous fluid such as glycerine flowing through two parallel plates depends on Poiseuille law, $q=-c{\frac{dh}{ds}}$. The analogue can be used vertically and horizontally. c. Heat model ; This is based on the analogy of the Fourier's law for heat conduction and Darcy's law for ground water flow. Especially unsteady problem can be studied with this model. A difficulty of the construction of this model is the isolation, which has to prevent losses of the heat. d. Electirc model ; Ohm's law for electric current is analogous to Darcy's law. Resistance material such as metal foil, graphite block, water with salt added, gelatine with salt added, ete. is connected to electric sources and resistor, and equi-voltage line is detected with galvanometer, $N_aCl$, $CuSo_4$, etc. are used as salt in the model. e. Membrane model ; This model is based on the facts that the deflection of a thin membrane obeys Laplace's equation if there is no load in the direction perpendicular to the membrane, and if the dellection is small.

  • PDF

Electrochemical Properties of Buckminsterfullerene ($C_{60}$) in Acetonitrile Containing Quarternary Ammonium Electrolytes

  • Kim, Il Kwang;Kim, Hyun Jin;Oh, Gi Su;Jeon, Il Chol;Ahn, Byoung Joon
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.675-682
    • /
    • 1995
  • Thin films of buckminsterfullerene($C_{60}$) formed by solution drop casting on Pt foil electrode surfaces were studied by cyclic voltammetry(CV) in acetonitrile(MeCN) containing quaternary ammonium or alkali-metal salts as supporting electrolyte. The electrochemical behaviors of $C_{60}$ films are found to be strongly dependent on the nature of the supporting electrolytes, especially with tetrabutyl ammonium perchlorate (TBAP, $NBu_4ClO_4$), and tetrabutyl ammonium tetrafluoroborate ($TBABF_4$, $NBu_4BF_4$). Reasonably stable films are formed into which electrons can be injected. The interaction of $C_{60}$ film with the quaternary ammonium cation may produce the fulleride salts $(TBA^+)(C{_{60}}^-)$ and $(TBA^+)_2(C{_{60}}^{2-})$. The bulk electroreduction with a controlled potential to generate the soluble $C{_{60}}^{3-}$ anions(dark red-brown color) is followed by electrooxidative deposition to produce a neutral $C_{60}$ film on the surface. The peak currents($I_{pc}$ and $I_{pa}$) of these thin film were dramatically decreased with repetitive potential scanning. These results could be explained by the adsorption-desorption phenomena and ion pairing interaction of reduced species($C{_{60}}^-$, and $C{_{60}}^{2-}$) onto the electrode surface. The peak current changes and peak potential shifts of the thin $C_{60}$ film in cyclic voltammograms formed from solution were observed by varying scan rates.

  • PDF

Two-Point Touch Enabled 3D Touch Pad (2개의 터치인식이 가능한 3D 터치패드)

  • Lee, Yong-Min;Han, Chang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.578-583
    • /
    • 2017
  • This paper presents a 3D touch pad technology that uses force touch sensors as a next-generation method for mobile applications. 3D touch technology requires detecting the location and pressure of touches simultaneously, as well as multi-touch function. We used metal foil strain gauges for the touch recognition sensor and detected the weak touch signals using Wheatstone bridge circuit at each strain gauge sensor. We also developed a touch recognition system that amplifies touch signals, converts them to digital data through a microprocessor, and displays the data on a screen. In software, we designed a touch recognition algorithm with C code, which is capable of recognizing two-point touch and differentiating touch pressures. We carried out a successful experiment to display two touch signals on a screen with different forces and locations.

Joining Foil-typed Pd-Cu Membranes to Collect CO2 Gas (이산화탄소 포집용 극박형 Pd-Cu 멤브레인 접합)

  • Rhewy, Gyung-Woo;Wee, So-Young;Kim, Gyeom;Lee, Chang-Ha;Baik, Il-Hyun;Park, Jin-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1056-1063
    • /
    • 2010
  • We present a new joining method for Pd-Cu membrane foils used as permeation tubes to collect $CO_2$. Since foils have poor mechanical strength, joining should be done at low temperatures to reduce residual stresses and without joining pressure. This contradicts the well known conditions for good contact between base materials that determines joint qualities. We selected Sn-Ag-Cu alloys that are highly reactive with Pd and Cu as a filler metal. As the filler melts at joining temperatures as low as $220{\sim}280^{\circ}C$, Pd and Cu are dissolved into the melt and react with the filler elements, which raises the melting temperature of the filler based on eutectic structures among the elements. Then, isothermal solidification progresses for the rest of the joining time. Intermetallic compounds (IMC) in the joints, one of the main factors for brittle joints, are inevitably formed. However, by optimizing both joining time and temperature, we balanced the wettability with IMC. Sealing test results confirmed that the joints are mechanically reliable during operation.

Effect of Plasma Treatment Times on the Adhesion of Cu/Ni Thin Film to Polyimide (폴리이미드와 Cu/Ni층과의 계면결합력에 미치는 플라즈마 처리 시간 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Jeon, Woo-Yong;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.657-663
    • /
    • 2011
  • This study represents the results of the peel strength and surface morphology according to the preprocessing times of polyimide (PI) in a Cu/Ni/PI structure flexible copper clad laminate production process based on the polyimide. Field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to analyze the surface morphology, crystal structure, and interface binding structure of sputtered Ni, Cu, and electrodeposited copper foil layers. The surface roughness of Ni, Cu deposition layers and the crystal structure of electrodeposited Cu layers were varied according to the preprocessing times. In the RF plasma times that were varied by 100-600 seconds in a preprocessing process, the preprocessing applied by about 300-400 seconds showed a homogeneous surface morphology in the metal layers and that also represented high peel strength for the polyimide. Considering the effect of peel strength on plastic deformation, preprocessing times can reasonably be at about 400 seconds.

Effect of Hydrothermal Reaction Conditions on Piezoelectric Output Performance of One Dimensional BaTiO3 Nanotube Arrays (1차원 BaTiO3 나노튜브 어레이의 압전발전성능에 수열합성 반응조건이 미치는 영향)

  • Lee, Jae Hoon;Hyeon, Dong Yeol;Heo, Dong Hun;Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

A Study on History and Archetype Technology of Goli-su in Korea (한국 고리수의 역사와 원형기술의 복원 연구)

  • Kim, Young-ran
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.4-25
    • /
    • 2013
  • Goli-su is the innovative special kind of the embroidery technique, which combines twining and interlacing skill with metal technology and makes the loops woven to each other with a strand. The loops floating on the space of the ground look like floating veins of sculpture and give people the feeling of the openwork. This kind of characteristic has some similarities with the lacework craft of Western Europe in texture and technique style, but it has its own features different from that of Western Europe. It mainly represents the splendid gloss with metallic materials in the Embroidered cloth, such as gold foil or wire. In the 10th century, early days of Goryo, we can see the basic Goli-su structure form of its initial period in the boy motif embroidery purse unearthed from the first level of Octagonal Nine-storied Pagoda of Woljeong-sa. In the Middle period of Joseon, there are several pieces of Goli-su embroidered relic called "Battle Flag of Goryo", which was taken by the Japanese in 1592 and is now in the Japanese temple. This piece is now converted into altar-table covers. In 18~19th century, two pairs of embroidered pillows in Joseon palace were kept intact, whose time and source are very accurate. The frame of the pillows was embroidered with Goli-su veins, and some gold foil papers were inserted into the inside. The triangle motif with silk was embroidered on the pillow. The stitch in the Needle-Looped embroidery is divided into three kinds according to comprehensive classification: 1. Goli-su ; 2. Goli-Kamgi-su ; 3. Goli-Saegim-su. From the 10th century newly establishing stage to the 13th century, Goli-su has appeared variational stitches and employed 2~3 dimensional color schemes gradually. According to the research of this thesis, we can still see this stitch in the embroidery pillow, which proves that Goli-suwas still kept in Korea in the 19th century. And in terms of the research achievement of this thesis, Archetype technology of Goli-su was restored. Han Sang-soo, Important Intangible Cultural Heritage No. 80 and Master of Embroidery already recreated the Korean relics of Goli-su in Joseon Dynasty. The Needle-Looped embriodery is the overall technological result of ancestral outstanding Metal craft, Twining and Interlacing craft, and Embroidery art. We should inherit, create, and seek the new direction in modern multi-dimensional and international industry societyon the basis of these research results. We can inherit the long history of embroidering, weaving, fiber processing, and expand the applications of other craft industries, and develop new advanced additional values of new dress material, fashion technology, ornament craft and artistic design. Thus, other crafts assist each other and broaden the expressive field to pursue more diversified formative beauty and beautify our life abundantly together.

The Characterization of Anthocyanin Pigments Prepared from Cherry (Prunus serrulata L. var. spontanea Max. Wils.) for the Potential Sources of Red Colorant (적색 색소자원으로서의 버찌(Prunus serrulata L. var. spontanea Max. Wils.) anthocyanin 색소의 특성)

  • Kim, Yong-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.134-139
    • /
    • 1999
  • The characteristics of anthocyanin pigments extracted from cherry(Prunus serrulata L. var. spontanea Max. Wils.) were investigated at the various conditions, such as light, temperature, organic acid, metal ion and pH. The pigments were fairly stable under the sunlight during the 20 days storage period at room temperature. The pigments covered with the Al-foil, as well as red, blue, green and yellow films, were very stable at pH 2.5. The high thermal stability (over the 64% at $115^{\circ}C$, 30 min) of the pigments in the dark at pH 2.5 was also found. In the presence of organic acid, the hyperchromic effect of red color was greatly increased in the dark at $25^{\circ}C$. Addition of metal ion, such as $Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}\;and\;Mn^{2+}$, was contributed on the stability in color at pH 2.5 throughout 20 days storage period in the dark at $25^{\circ}C$. However, $Cu^{2+}\;and\;Fe^{3+}$ caused the rapidly degradation of pigments, and $Al^{3+}$ converted red color to blueish violet. The hyperchromic effect of the red color increased, as pH decreased. Therefore, these results indicated that cherry anthocyanin pigments might be used as the potential sources of natural red colorant for foods.

  • PDF