• Title/Summary/Keyword: metal dispersion

Search Result 267, Processing Time 0.028 seconds

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

Surface Modification of Ag Coated Cu Conductive Metal Powder for Conductive Silicone Sealant Gasket Paste

  • Park, Seong-Yong;Yoon, Tae-Won;Lee, Chung-Ho;Jeong, In-Bum;Hyun, Sang-Hoon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1076-1077
    • /
    • 2006
  • Conductive pastes consist of conductive fillers( Au, Ag, Ni, Cu etc.), organic binders, solvents and additives. Meanwhile, there are some metal powders such as copper, nickel etc that are used for pastes which have serious surface corrosion problems. This problem leads to change of the color and decrease in conductivity and affect storage stability of conductive pastes. By using silane coupling agent and dispersion agent, we can ensure both the corrosion stability and long term storage stability, and enhance the high performance electrical and mechanical properties of EMI shielding silicone sealant.

  • PDF

Preparation of UV curable coating solution from multi functional acrylates and characterization of optical properties of coated layer on PET film (다관능 아크릴레이트계 자외선 경화형 코팅액의 제조 및 이를 이용한 PET 필름 도막의 광학 특성 연구)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.467-472
    • /
    • 2009
  • Ultraviolet curable coating solution was prepared with poly(ethylene glycol) acrylate oligomer and various mono and multi-functional acrylate monomers. The optical properties of UV cured coating layer on PET film with acrylate coating solution containing metal oxides, such as fumed silica and alumina, were also investigated to reduce light reflection on films. Poly(ethylene glycol) diacrylate which has 575 of average molecular weight was used as oligomer acrylate, and pentaerythritol triacrylate and dipentaerythritolpenta-/hexa acrylate were used as multi-functional acrylate monomers. Also, butyl acrylate was used to improve the adhesion as well as to reduce glass transition temperature to give a better flexability. 1-hydroxy cyclohexyl phenyl ketone was used as photoinitiator. We found out the metal oxides in acrylate coating solution showed a homogeneous dispersion from energy dispersive spectroscopy data. Transmittance and light reflection of coated PET film was measured with UV/vis spectrometer and gloss meter, respectively. When 1.00 g of both metal oxides was added into coating solution, the transmittance and the glossiness were reduced from 90% to 30% and from 190 GU to 35 GU, respectively. However, adding up to 1.00 g of the metal oxide into coating solution did not affect on the hardness of coating layer and adhesion between coated layer and PET film. Conclusively, we can control transmittance and light reflection of coated film by adjusting the amounts of metal oxide in coating solution.

Environmental Contamination of the Abandoned Chonju Il Mine in the Chonbuk Area (전주 일광산 주변의 환경 오염에 관한 연구 -겨울철 중금속오염을 중심으로-)

  • 조규성;정덕호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.623-631
    • /
    • 1998
  • Pyrite contained in wasted ore dumps induces a strong acid environment when it contacts oxygenated rainfall. Present research was designed to evaluate the pollution of an area that is supposedly contaminated by pyrite of ore wasted dumps form in Chonju Il Mine. Measured are the pH and selected heavy metal elements in the supposedly polluted hydrologic system. The samples include three types : those collected from the stream waters; those from the stream sediments; and those from the rice field soil scattered over the area. The dispersion path of the pollution source was also traced. The pH of the hydrologic system ranged from 3.44 to 5.46, which clearly indicates that the area is on the acid environment. The pH tends to rise as the distance from the minehead increases. The content of heavy metal elements dissolved in the stream water varies as follows; Mn=69.73~1.99ppm, Cd=0.02~0.03ppm, Zn=0.77~1.18ppm, Cu=0.04~0.13ppm, Pb=0.22~0.32ppm. The stream water in this state may induce serious heavy metal pollution to the agricultural land and the water for human life especially in the villages down the stream. The content of heavy metal elements dissolved in the stream sediment varies as follows; Mn=245.0~4685.0ppm, Cd=10.0~15.0ppm, Zn=105.0~210.0ppm, Cu=65.0~155.0ppm, Pb=90.0~150.0ppm. The content of heavy metal elements dissolved in the rice field soil varies as follows; Mn=185.0~260.0ppm, Cd=10.0~15.0ppm, Zn=135.0~180.0ppm, Cu=65.0~90.0ppm, Pb=100.0~130.0ppm. The pollution index in the stream sediment and the rice field sell is 1.36~2.03, which shows that pollution had already begun all over the area where the samples were collected.

  • PDF

Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State (반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발)

  • 강충길;김현우;김영도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.581-593
    • /
    • 1990
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by strirring of Al7075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semi-solid alloy. The possibility o homogeneous fiber-reinforce aluminum alloy by addition of $Al_{2}$O$_{3}$ short fibers with vigorous agitation was investigated. The billet of composite materials was fabricated by squeeze casting, and homogeneous dipersion state of fibers in billet of fabricated metal matrix composites was observed. A slurry of semi-solid short fiber metal matrix composites is used in the direct rolling process, and this process showed the fabrication possibility of metal matrix composite sheets. The fabricated sheet was tested regarding vickers hardness, elongation and micro-structure. It has become clear that mashy state processing and working are very useful to obtain parts of composites material closed to near net shape.

Preparation of Waterborne Polyurethane Coating Solutions with Antistatic Property from Alkali Metal Salts (알카리 금속염으로부터 대전방지용 수분산 폴리우레탄 코팅용액 제조)

  • Hong, Min Gi;Kim, Byung Suk;Lee, Yong Woon;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.427-434
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from poly (carbonate diol), isophrone diisocyanate and dimethylol propionic acid at different NCO/OH molar ratios. Subsequently, the PUD was mixed with different types of alkali metal salts ($LiClO_4$, $NaClO_4$, and $KClO_4$) to prepare antistatic waterborne polyurethane coating solutions. Effects of the types and amounts of alkali metal salts were investigated on the surface resistances of the resulting coating films. The surface resistances of coating films were decreased with increasing the amounts of alkali metal salts added in the PUD. The coating films prepared with the same amount of alkali metal salts showed increased ionic conductivity with the order of $LiClO_4$ > $NaClO_4$ > $KClO_4$. Also, the surface resistances of coating films were increased with increasing the molar ratios of NCO/OH in the PUD.

Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites (SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향)

  • Shim, Shang-Han;Chung, Yong-Keun;Park, In-Min
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites (폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법)

  • 이평구;조호영;염승준
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • This paper provides a comprehensive overview of geochemical approaches for investigating and assessing heavy metal contamination in abandoned mine sites. Major sources of contaminants at the abandoned mine sites are mine water, waste rocks, tailings, and chemicals used in beneficiation and mineral processing. Soil, sediment, surface and ground water, and ecological system can be contaminated by heavy metals, which are transported due to erosion of mine waste piles, discharge of acid mine drainage and processed water, and dispersion of dust from waste rocks and tailings. The abandoned mine sites should be characterized using various methods including chemical analysis, mineralogical analysis, acid generation prediction tests, leaching/extraction tests, and field tests. Potential and practical environmental impacts from the abandoned mines should be assessed based on the site characterization.

The Study of Heat Resistant Aluminum Alloy with CrW Homogeneous Solid Solution (CrW 전율고용체 첨가 내열 알루미늄 합금에 관한 연구)

  • Kim, Jin-Pyeong;Sung, Si-Young;Han, Beom-Suck;Kim, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • Recently, heat-resistant aluminum alloy has been re-focused as a downsizing materials for the internal combustion engines. Heat-resistant Al alloy development and many researches are still ongoing for the purpose of improving thermal stability, high-temperature mechanical strength and fatigue properties. The conventional principle of heat-resistant Al alloy is the precipitation of intermetallic compounds by adding a variety of elements is generally used to improve the mechanical properties of Al alloys. Heat resistant aluminum alloys have been produced by CrW homogeneous solid solution to overcome the limit of conventional heat resistant aluminum alloy. From EPMA, it is found that CrW homogeneous soild solution phases with the size of $50-100{\mu}m$ have been dispersed uniformly, and there is no reaction between aluminum and CrW alloy. In addition, after maintaining at high temperature of 573 K, there is no growth of hardening phase, nor desolved, but CrW still exists as a homogeneous solid solution.

Surface-enhanced infrared detection of benzene in air using a porous metal-organic-frameworks film

  • Kim, Raekyung;Jee, Seohyeon;Ryu, Unjin;Lee, Hyeon Shin;Kim, Se Yun;Choi, Kyung Min
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.6
    • /
    • pp.975-980
    • /
    • 2019
  • Infrared (IR) spectroscopy is a powerful technique for observing organic molecules, as it combines sensitive vibrational excitations with a non-destructive probe. However, gaseous volatile compounds in the air are challenging to detect, as they are not easy to immobilize in a sensing device and give enough signal by themselves. In this study, we fabricated a thin nanocrystalline metal-organic framework (nMOF) film on a surface plasmon resonance (SPR) substrate to enhance the IR vibration signal of the gaseous volatile compounds captured within the nMOF pores. Specifically, we synthesized nanocrystalline HKUST-1 (nHKUST-1) particles of ca. 80 nm diameter and used a colloidal dispersion of these particles to fabricate nHKUST-1 films by a spin-coating process. After finding that benzene was readily adsorbed onto nHKUST-1, an nHKUST-1 film deposited on a plasmonic Au substrate was successfully applied to the IR detection of gaseous benzene in air using surface-enhanced IR spectroscopy.