• Title/Summary/Keyword: metal deposits

Search Result 151, Processing Time 0.024 seconds

Base-metal Mineralization in the Cretaceous Gyeongsang Basin and Its Genetic Implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong Metallogenic Provinces (한국 경상분지 백악기 비철금속 광화작용과 그 성인적 의의: 함안-군북-고성(-창원) 및 의성 광상구를 중심으로)

  • 이상렬;최선규;소칠섭;유인창;위수민;허철호
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The Cretaceous magmatism in the Gyeongsang Basin, Korea, led to the formation of two contrasting metallogenic provinces: the Haman-Gunbug-Goseong(-Changwon) (HGGC) and the Euiseong (EU). The mineralization in the HGGC metallogenic province represents copper, gold and iron of porphyry-related deposits that display close relationships in time and space with subvolcanic granitoids. Much of copper-gold-forming events in this province are consistently constrained to the period between ca. 89 and 81 Ma. The hydrothermal systems of copper-gold vein deposits in the HGGC province are associated with ore-forming fluids of high to intermediate temperature (300∼50$0^{\circ}C$) with high salinity (20∼55 equiv. wt. % NaCl). The ore-forming fluids become progressively more diluted by the incorporation of decreased quantities of magmatic water further from the nearby intrusion, suggesting significant input and fluid mixing of a meteoric water component to the magmatic fluids during the late stage of geothermal systems. In contrast, the EU metallogenic province is characterized by polymetallic vein deposits that are consistently constrained to a period of 78∼60 Ma. The geothermal systems of polymetallic vein deposits in the EU province are derived from a narrow range of intermediate temperature (200∼40$0^{\circ}C$) with relatively low salinity(1∼7 equiv. wt.% NaCl). It may represent a mixed fluid of magmatic and meteoric waters. The base-metal mineralization in the Gyeongsang Basin shows a close spatial and temporal distinction between the proximal environment derived from shallow-level granitoids in the southwestern HGGC province and the distal condition derived from volcanic environments in the northwestern EU province.

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.

A Survey Report on the Polymetallic Mineralization in the Oyon Mineralized District, Central Peru (페루 중부 오욘 다중금속 광화작용에 대한 조사보고)

  • Lee, Jaeho;Kim, Injoon;Nam, Hyeong-tae
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • The surveyed mines are located in a polymetallic vein, replacement, and skarn mineral district in the central Andes of Peru. Iscaycruz, which includes underground and open pit mines that produce zinc and lead concentrates, was the largest mineral deposit of an important group of base metal deposits in the Andes of central Peru. The deposits are sub-vertical seams of polymetallic ores(Zn, Cu, and Pb). These seams are hosted by Jurassic and Cretaceous sedimentary rock formation. The intrusion of igneous rocks in these formations originated metallic deposits of metasomatic and skarn types. The Raura mine is composed of polymetallic deposit of veins and replacement orebodies. The main sedimentary unit in the area is Cretaceous Machay Limestone. The Raura depression contains several orebodies each with different mineralization: predominantly Pb-Zn bearing Catuvo orebody; Ag-rich galena-bearing Lake Ninacocha orebody; Cu-Ag bearing Esperanza and Restauradora orebody. Huaron is a hydrothermal polymetallic deposit of silver, lead, zinc, and copper mineralization hosted within structures likely related to the intrusion of monzonite dikes, principally located within the Huaron anticline. Mineralization is encountered in veins parallel to the main fault systems, in replacement bodies known as "mantos" associated with the calcareous sections of the conglomerates and other favourable stratigraphic horizons, and as dissemination in the monzonitic intrusions at vein intersections.

Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Orchard Fields (지형에 따른 전북지역 과수원 토양의 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.859-865
    • /
    • 2011
  • This study looked into 110 sites of orchard fields to investigate the relationships between the physical and chemical properties of soils, including heavy metal contents, and the topographic characteristics of the fields in Jeonbuk province. The topographic distribution of orchard fields in Jeonbuk province was local valley and fans, hilly and mountains, mountain foot slopes, alluvial plains, diluvium, and fluvio-marine deposits. Forty-six percent (46%) of total orchard fields were located in the hilly and mountains. Soil texture of the local valley and fans was mostly sandy clay loam, and the soil texture of other topographical sites were varied. Bulk density, porosity, and soil hardness were not different among the various topographic sites. The content of plant available water was the highest (19.5%) in the sites of diluvium. Soil pH, electrical conductivity (EC), and exchangeable $Mg^{2+}$ content were the highest in the sites of fluvio-marine deposits, whereas the contents of soil organic matter (SOM), available phosphorus, and exchangeable $Ca^{2+}$, $K^+$, and $Na^+$ were not significantly different among the topographic sites. Also, soil pH and SOM content were generally in optimal ranges for the fruit plants in the orchard fields, but other values were mostly higher than those in optimum. In addition, the contents of heavy metals were much lower than the levels of Soil Contamination Warning Standard.

Metallogeny on Gold-Silver in South Korea (남한(南韓)의 금(金)·은광화작용(銀鑛化作用)에 대(對)한 고찰(考察))

  • Kim, Won Jo
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.243-264
    • /
    • 1986
  • This work is a metallogeny on gold-silver deposits in South Korea based on the close examination of the author's own data and a broad review of existing literature available. The metallogenic epochs in Korea are temporarily connected with the history of tectonism and igneous activities, and are identified as the Precambrian, Paleozoic, Jurassic to early Cretaceous, late Cretaceous to early Tertiary, and Quaternary epochs, whereas the metallogenic provinces are spatially associated with some of the felsic to intermediate igneous rocks, lacking mineralization related to basic and ultrabasic rocks. The metallogeny on the gold-silver deposits is mostly related to the granitic rocks intrusives. Epigenetic gold-silver mineralization in South Korea ranges in metallogenic epochs from Precambrian through Triassic, Jurassic and Cretaceous to Eocene (?), in genetic types from hypothermal through mesothermal and epithermal quartz-sulfide veins to volcanogenic stockworks, with some disseminated types. Reporting on metallic association from gold without silver, gold-silver, silver-gold, silver without gold, and gold or silver as a by-product from other metallic ores. The most representative genetic types and metal associations of gold-silver deposits are hydrothermal quartz veins associated with the Daebo and Bulgugsa granitic magmatism. The most closely associated paragenetic metallic minerals in gold-silver hydrothermal quartz-sulfide vein type deposits are: copper, lead, zinc, pyrite and arsenopyrite. More than 560 gold-silver mines are plotted in the distribution map grouped within the 10 different metallogenic provinces of South Korea. Specific mineralizations with related mineral association in both sulfides and gangues observed selected from 18 Korean and 8 Japanese Au-Ag deposits. The 7 selected individual gold-silver mines representing specific mineralization types are described in this report.

  • PDF

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Analysis of Regional Potential Mapping Factors of Metal Deposits using Machine Learning (머신러닝을 이용한 광역 금속 광상 배태 잠재성 평가 인자 분석)

  • Park, Gyesoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • The genesis of ore bodies is a very diverse and complex process, and the target depth of mineral exploration increases. These create a need for predictive mineral exploration, which may be facilitated by the advancement of machine learning and geological database. In this study, we confirm that the faults and igneous rocks distributions and magnetic data can be used as input data for potential mapping using deep neural networks. When the input data are constructed with faults, igneous rocks, and magnetic data, we can build a potential mapping model of the metal deposit that has a predictive accuracy greater than 0.9. If detailed geological and geophysical data are obtained, this approach can be applied to the potential mapping on a mine scale. In addition, we confirm that the magnetic data, which provide the distribution of the underground igneous rock, can supplement the limited information from the surface igneous rock distribution. Therefore, rather than simply integrating various data sets, it will be more important to integrate information considering the geological correlation to genesis of minerals.

Long-Term Investigation of Regional Topographic Effects on Soil Chemical Properties and Heavy Metal Concentrations in Paddy Fields

  • Ahn, Byung-Koo;Kang, Seong-Soo;Shin, Jae-Yeon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Topographic conditions of agricultural fields work as a important factor to identify different soil properties. This study was conducted to investigate the selected soil chemical properties and the concentrations of heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields of different topographic areas at four year intervals from 1999 to 2011. Three-hundred soil sampling sites in the paddy fields were selected from the different topographic areas that were local valley and fans, fluvio-marine deposits, alluvial plains, and diluvial terraces. The mean values of soil pH ranged 5.7~5.8 that were within optimal range for rice cultivation. The mean values of other properties such as soil organic matter (SOM) content, the concentrations of exchangeable cations, $K^+$, $Ca^{2+}$, and $Mg^{2+}$, and available silicate concentration were lower or close to the optimal values, but the mean concentrations of available phosphorus were exceeded the range of optimal value, $80{\sim}120mg\;kg^{-1}$, in many paddy fields. In particular, The concentrations of available phosphorus in the paddy fields of local valley and fans, alluvial plains, and fluvio-marine plains were mostly declined. However, in diluvial terrace areas, the phosphorus concentrations unexpectedly increased; furthermore, they were significantly higher than those in other topographic areas. The mean concentrations of 0.1 M HCl-extractable heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields were slightly and gradually declined during the study years, but the Pb concentrations were not statistically changed. In addition, the concentrations of heavy metals were widely ranged depending on the different sampling sites. Nevertheless, the concentrations of heavy metals were significantly lower than the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (1-region) presented in Soil Environment Conservation Law (SECL).

fabrication of Zirconia Thin Films by Plasma Enhanced Metal-Organic Chemical Vapor Deposition (플라즈마 유기금속 화학증착을 이용한 지르코니아 박막제조)

  • Kim, Gi-Dong;Jo, Yeong-A;Sin, Dong-Geun;Jeon, Jin-Seok;Choe, Dong-Su;Park, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 1999
  • Zirconia thin films of uniform structure were fabricated by plasma-enhanced metal-organic chemical vapor deposition. Deposition conditions such as substrate temperature were observed to have much influence on the formation of zirconia films, therefore the mechanism of decomposition of $Zr[TMHD]_4$precursor and film growth were examined by XRD, FT-IR etc., as well as the determination of the optimal deposition condition. From temperature dependence on zirconia, below the deposition temperature of 523K, the amorphous zirconia was formed while the crystalline of zirconia with preferred orientation of cubic (200) was obtained above the temperature. Deposits at low temperatures were investigated by FT-IR and the absorption band of films revealed that the zirconia thin film was in amorphous structure and has the same organic band as that of Zr precursor. In case of high temperature, it was found that Zr precursor was completely decomposed and crystalline zirconia was obtained. In addition, at 623K the higher RF power yielded the increased crystallinity of zirconia implying an increase in decomposition rate of precursor. However, it seems that RF power has nothing with the zirconia deposition process at 773K. It was found that the proper bubbler temperature of TEX>$Zr[TMHD]<_4$ precursor is needed along with high flow rate of carrier gas. Through AFM analysis it was determined that the growth mechanism of the zirconia thin film showed island model.

  • PDF

A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li$_2$O Molten Salt (LiCl-Li$_2$O 용융염계에서 우라늄 산화물의 전기화학적 금속전환 반응 메카니즘에 관한 연구)

  • 오승철;허진목;서중석;박성원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.25-39
    • /
    • 2003
  • This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li$_2$O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li$_2$O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  • PDF