• 제목/요약/키워드: metal deposition

검색결과 1,619건 처리시간 0.033초

기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석 (Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts)

  • 김단아;이광규;안동규
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

레이저 국소증착을 이용한 TFT-LCD회로 수정5 미세 텅스텐 패턴 제조 (Laser-induced chemical vapor deposition of tungsten micro patterns for TFT-LCD circuit repair)

  • 박종복;김창재;박상혁;신평은;강형식;정성호
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.165-173
    • /
    • 2005
  • This paper presents the results for deposition of micrometer-scale metal lines on glass for the development of TFT-LCD circuit repair-system. Although there had been a few studies in the late 1980's for the deposition of metallic interconnects by laser-induced chemical vapor deposition, those studies mostly used continuous wave lasers. In this work, a third harmonic Nd:YLF laser (351nm) of high repetition rates, up to 10 KHz, was used as the illumination source and W(CO)s was selected as the precursor. General characteristics of the metal deposit (tungsten) such as height, width, morphology as well as electrical properties were examined for various process conditions. Height of the deposited tungsten lines ranged from 35 to 500 m depending on laser power and scan speed while the width was controlled between 50um using a slit placed in the beam path. The resistivity of the deposited tungsten lines was measured to be below $1{\Omega}{\cdotu}um$, which is an acceptable value according to the manufacturing standard. The tungsten lines produced at high scan speed had good surface morphology with little particles around the patterns. Experimental results demonstrated that it is likely that the deposit forms through a hybrid process, namely through the combination of photolytic and pyrolytic mechanisms.

플라즈마 유기금속 화학증착을 이용한 지르코니아 박막제조 (fabrication of Zirconia Thin Films by Plasma Enhanced Metal-Organic Chemical Vapor Deposition)

  • 김기동;조영아;신동근;전진석;최동수;박종진
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.155-162
    • /
    • 1999
  • Zirconia thin films of uniform structure were fabricated by plasma-enhanced metal-organic chemical vapor deposition. Deposition conditions such as substrate temperature were observed to have much influence on the formation of zirconia films, therefore the mechanism of decomposition of $Zr[TMHD]_4$precursor and film growth were examined by XRD, FT-IR etc., as well as the determination of the optimal deposition condition. From temperature dependence on zirconia, below the deposition temperature of 523K, the amorphous zirconia was formed while the crystalline of zirconia with preferred orientation of cubic (200) was obtained above the temperature. Deposits at low temperatures were investigated by FT-IR and the absorption band of films revealed that the zirconia thin film was in amorphous structure and has the same organic band as that of Zr precursor. In case of high temperature, it was found that Zr precursor was completely decomposed and crystalline zirconia was obtained. In addition, at 623K the higher RF power yielded the increased crystallinity of zirconia implying an increase in decomposition rate of precursor. However, it seems that RF power has nothing with the zirconia deposition process at 773K. It was found that the proper bubbler temperature of TEX>$Zr[TMHD]<_4$ precursor is needed along with high flow rate of carrier gas. Through AFM analysis it was determined that the growth mechanism of the zirconia thin film showed island model.

  • PDF

진공아크 증착법과 다른 공정에 의해 증착된 MgO 박막 특성 비교 (Comparison of characteristics of MgO films deposited by vacuum arc method with other methods.)

  • 이은성;김종국;이성훈;이건환
    • 한국진공학회지
    • /
    • 제12권2호
    • /
    • pp.112-117
    • /
    • 2003
  • MgO 박막은 PDP(plasma display panels)분야에서 널리 사용되어 왔다. 본 연구에서는, 기존에 사용되고 있는 e-beam evaporation, reactive magnetron sputtering법과 arc deposition법으로 MgO 보호막을 증착하여 구조적 · 광학적 특성을 비교하였다. 반응 가스인 산소 가스의 유입량을 변화시켜 Mg metal target을 이용하여 vacuum arc deposition equipment 의해 유리 기판 위에 증착하였다. Ellipsometer를 이용하여 치밀도를 측정하고, MgO보호막의 마모율(erosion rate)를 측정하기 위해 가속 실험 방법을 도입, Ar+ 이온빔에 의한 erosion test를 시행하여 내마모성을 알아보았다. 또한, XPS와 UV test를 사용하여 MgO보호막의 광투과도에 미치는 수분의 영향을 조사한 결과, arc evaporation 법이 광투과도 90%이상을 유지하여 수분의 영향에 둔감한 것을 알 수 있었다. 한편, XRD와 AFM을 이용하여 MgO 박막의 구조와 표면 형상에 대해 조사하였다.

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

탄소 나노튜브가 코팅된 은 메탈-메쉬 전극의 특성 (Characteristics of Silver Metal-mesh Electrodes Coated by Carbon Nanotubes)

  • 김부종;박종설;황영진;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제14권1호
    • /
    • pp.55-59
    • /
    • 2015
  • This study demonstrates hybrid-type transparent electrodes for touch screen panels. The hybrid-type electrodes were fabricated by coating carbon nanotubes (CNTs) on metal meshes. To form the metal-meshes, thin films of silver (Ag) were deposited on glass substrates using the sputtering method and then patterned via photolithography to obtain mesh structures whose line width was $10{\mu}m$ and line-to-line spacing was $300{\mu}m$. CNTs were coated on Ag-meshes by using two different methods, such as spray coating and electrophoretic deposition (EPD). For the samples of a Ag-meshes and CNTs-coated Ag-meshes, their surface morphologies, electrical sheet resistances, and visible-range transmittances and reflectances were characterized and compared. The experimental results indicated that the reflectance of Ag-mesh electrodes was substantially reduced by coating of CNTs. Especially, the hybrid electrodes of Ag-meshes with EPD-coated CNTs showed excellent properties such as sheet resistance lower than $20{\Omega}/{\Box}$, transmittance higher than 90 %, and reflectance lower than 8%.