• Title/Summary/Keyword: metal complex

Search Result 1,254, Processing Time 0.023 seconds

Kinetics and Stereochemistry of CO Substitution Reactions of Half-Open Chromocene Carbonyls(Ⅲ): Reactions of $Cp^{*}(\eta^{5}-C_{5}H_{7})$CrCO and Phosphines

  • Jong-Jae Chung;Byung-Gill Roh;Yu-Chul Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.549-554
    • /
    • 1993
  • The CO substitution reactions in the complex, $Cp^*(C_5H_7)$CrCO with $PR_3(PR_3=PMePh_2,\;P(OCH_3)_3,\;PMe_2Ph)$ were investigated spectrophotometrically at various temperatures. For the reaction rates, it was suggested that the CO substitution reaction took place by first-order (dissociative) pathway. Activation parameters in decaline are ${\Delta}H^{\neq}= 21.99{\pm}2.4$ kcal/mol, ${\Delta}S^{\neq}= 8.9{\pm}7.1$ cal/mol·k. Unusually low value of ${\Delta}S^{\neq}$, suggested an ${\eta}^5-S{\to}\;{\eta}^5$-U conversion of the pentadienyl ligand. At various temperature, the rates of reaction for the Cp(pdl)CrCO complexes increase in the order $Cp^*(C_5H_7)$-CrCO < Cp$(C_5H_7)$CrCO < Cp(2,4-$C_5H_{11}$)CrCO, which can be attributed to the usual steric acceration or electronic influence for the ligand substitution of metal complexes. This suggestion was confirmed by the extended-Huckel molecular orbital (EHMO) calculations, which revealed that the energy of $[Cp^*(U-C_5H_7)Cr]^{\neq}$ transition state is about 4.93 kcal/mol lower than that of [Cp(S-$C_5H_7)Cr]^{\neq}$ transition state, and the arrangement of the overlap populations between Cr and the carbon of CO is $Cp^*(C_5H_7)$CrCO > Cp($C_5H_7$)CrCO > Cp(2,4-$C_7H_{11}$)CrCO.

Casting Layout Design Using Flow & Solidification Analysis-Automotive Part(Oil Pan_BJ3E) (유동 및 응고해석을 이용한 주조방안설계-자동차용 부품(오일팬_BJ3E))

  • Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE). Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

The Status and Prospect of Decommissioning Technology Development at KAERI (한국원자력연구원의 해체기술 개발 현황 및 향후 전망)

  • Moon, Jeikwon;Kim, Seonbyung;Choi, Wangkyu;Choi, Byungseon;Chung, Dongyong;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.139-165
    • /
    • 2019
  • The current status and prospect of decommissioning technology development at KAERI are reviewed here. Specifically, this review focuses on four key technologies: decontamination, remote dismantling, decommissioning waste treatments, and site remediation. The decontamination technologies described are component decontamination and system decontamination. A cutting method and a remote handling method together with a decommissioning simulation are described as remote dismantling technologies. Although there are various types of radioactive waste generated by decommissioning activities, this review focuses on the major types of waste, such as metal waste, concrete waste, and soil waste together with certain special types, such as high-level and high-salt liquid waste, organic mixed waste, and uranium complex waste, which are known to be difficult to treat. Finally, in a site remediation technology review, a measurement and safety evaluation related to site reuse and a site remediation technique are described.

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

Dyeing and Fastness of Sea-island-type Ultrafine Nylon Knitted Fabric according to the Type of Acid Dye (해도형 초극세 나일론 편성물의 산성 염료 종류에 따른 염색 및 견뢰도)

  • Cho, Hang Sung;Shim, Euijin
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.135-145
    • /
    • 2022
  • In this study, the dyeability of 0.06-denier-per-filament (dpf) ultrafine sea-island-type nylon knitted fabric was investigated and compared with that of 1.0-dpf general nylon with respect to four types of dyes. In particular, leveling, milling, half-milling, and metal-complex dyes were compared at concentrations of 0.5%, 1.0%, 2.0%, 4.0%, and 8.0% on-weight-fabric (o.w.f). In each case, staining was performed at 100 ℃. The dyeabilities of the materials were compared in terms of the depth of color as defined by the ratio of the absorption coefficient (K) to the scattering coefficient (S). Results indicated generally low K/S values for both the 0.06-dpf ultrafine sea-island-type nylon and 1.0-dpf general nylon. In terms of the dye type, the milling and half-milling dyes exhibited K/S values of ≥20 for all colors of yellow, red, and blue for the 0.06-dpf ultrafine yarn sea-island-type nylon, which were superior to those of the other dye types. Hence, the milling and half-milling dyes are considered more suitable than the other dyes. Further, a comparison of dye fastness and compatibility revealed that the half-milling dye was the most suitable dye for the 0.06-dpf ultrafine sea-island-type nylon.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

Establishment of Integrated Health Evaluation Criteria for Coastal Aquaculture System (살포식 패류 양식어장 건강도 평가기준 설정)

  • Young-Shin Go;Dong-Hun Lee;Young-Jae Lee;Won-Chan Lee;Un-Ki Hwang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.462-472
    • /
    • 2023
  • We investigated the physio-chemical and geochemical parameters in the spraying shellfish aquacultures (Yeoja and Gangjin Bay) to establish the systematic strategy for effective environmental management. Spatial variation of each parameter showed partially significant difference (P<0.05) between Yeoja and Ganjin Bay, inferring the discriminative progress (i.e., accumulation and degradation) of the autochthonous organic matter within the aquaculture environments. We additionally integrated various properties (e.g., water/sediment quality, natural hazard, and biological health) which may affect the biological growth within the aquaculture habitats based on the biogeochemical cycles related to environmental components and aquaculture species. We used a screening approach (i.e., one out-all out; OOAO) which can permit the assessment of the health levels of aquaculture species, the scoring for other parameters (seawater, sediment, and natural hazard) as three levels (excellent, moderate and poor) depending on the complex interactive properties occurring in the aquaculture environments. Actual, discriminative scores obtained via our case studies may confirm that these stepwise processes are effectively evaluated for optimal health conditions within the aquaculture habitats. Thus, this approach may provide valuable insights for effective environmental management and sustainable growth of aquaculture operation.

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.