• Title/Summary/Keyword: metal catalyst

Search Result 795, Processing Time 0.029 seconds

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan;Choi, Wooyeol;Kim, Youbin;Lee, Chanyong;Jun, Yongseok;Kim, Junhee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming (메탄올 수증기 개질반응에서 알루미나 및 하이드로탈사이트를 이용한 니켈 및 구리 촉매 비교 연구)

  • Lee, Jae-hyeok;Jang, Seung Soo;Ahn, Ho-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.14-20
    • /
    • 2022
  • In this study, the catalytic reaction characteristics for producing hydrogen using methanol steam reforming were investigated. Nickel and copper are frequently used in steam reforming reaction and methanol synthesis, were used as main active metals. As a support, hydrotalcite has a high specific surface area, excellent porosity and thermal stability, and has weak Lewis acid sites and basic properties. Hydrotalcite was used to identify catalysts of methanol steam reforming with catalytic activity and their properties. In this research, high reactivity was shown in the catalyst of copper metal with high reducibility. And increasing of active metal loading showed the higher the methanol conversion and hydrogen selectivity.

Oxidative Desulfurization of Marine Diesel Using WOx/SBA-15 Catalyst and Hydrogen Peroxide (WOx/SBA-15 촉매와 과산화수소를 이용한 선박용 경유의 산화 탈황 연구)

  • Oh, Hyeonwoo;Kim, Ji Man;Huh, Kwang-Sun;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • In this work, tungsten oxide ($WO_x$) supported on SBA-15 (mesoporous silica) were prepared and applied for oxidative desulfurization of sulfur compounds in marine diesel containing about 230 ppmw of sulfur concentration. Prepared catalysts were examined by two steps; at first step, oxidation reaction carried out with hydrogen peroxide as oxidant and then the oxidized sulfur compounds were extracted by acetonitrile as solvent. Catalysts were characterized by using X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and $N_2$ adsorption-desorption isotherms. Tungsten oxide exists as monoclinic crystal system on SBA-15 and over about 10 wt% of the $WO_x$ loading took the form of multi-layers on SBA-15. The 13 wt% $WO_x$/SBA-15 catalyst exhibite highest activity, achieving about 76.3% sulfur removal in the reaction conditions, such as catalyst amount of 0.1 g, reaction temperature at $90^{\circ}C$, reaction time for 3 h and O/S molar ratio of 10. One time oxidation reaction is enough oxidize the sulfur compounds in marine diesel completely. The repetition experiment of extraction process indicated that sulfur removal could reach 94.4% after 5 times.

Low Temperature CO Oxidation over CuO Catalyst Supported on Al-Ce Oxide Support (Al-Ce 산화물에 담지된 CuO 촉매상에서 저온 CO산화반응)

  • Park, Jung-Hyun;Yun, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.156-162
    • /
    • 2017
  • CuO(x)/0.3Al-0.7Ce catalysts with different CuO loadings (x = 2~20 wt%) were prepared by impregnation method and investigated the effects of CuO loadings on the low temperature CO oxidation. Of the used catalysts, the CuO(10)/0.3Al-0.7Ce catalyst showed the highest catalytic performance in the absence or presence of water vapor. In the presence of water vapor, the catalytic performance was drastically decreased, with a temperature of 50% CO conversion ($T_{50%}$) shifted to higher temperature by $50^{\circ}C$ compared to the those in dry conditions because of the competitive adsorption of water vapor on the active sites. The copper metal surface area calculated from $N_2O$-titration analysis and the oxygen capacity from CO-pulse experiments were increased with the CuO loadings and showed a maximum at 10 wt%CuO/0.3Al-0.7Ce catalyst. These trends are in good agreement with the tendency of $T_{50%}$ of the catalysts. From these characteristic aspects, it could be deduced that the catalytic performance was closely related to the oxygen capacity and the copper metallic surface area.

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Properties of ZnO nanostructures by metal deposited on Si substrates (Metal 증착한 Si 기판 상의 ZnO 나노 구조 특성)

  • Jang, Hyeon-Gyeong;Jung, Mi-Na;Park, Seung-Hwan;Shin, Dae-Hyeon;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1034-1037
    • /
    • 2005
  • The variation of shapes and related properties of ZnO nanostructures grown on the metal pattern and Si substrate have been investigated. Ni, Cr metal patterns were formed on Si (111) substrates by e-beam evaporation, and ZnO nanostructures were fabricated on it by using thermal evaporation of Zn powder in air. Growth temperature was controlled from 500 $^{\circ}$C to 700 $^{\circ}$C. When the growth temperature was relatively low, no considerable effect was found. However, UV emission intensity decreased, and Green-emission intensity, which is regarded as originated from the defect state in the ZnO nanostructure, increased as growth temperature increase. Also, the variation of nanostructure shape at high temperature (700 $^{\circ}$C) is understood in terms of the enhanced incorporation of metal vapor during the nanostructure formation.

  • PDF

Transition Metal Catalyzed Carbonylation of Nitrobenzene for the Synthesis of N,N'-diphenylurea (균일계 전이금속 촉매를 이용한 니트로벤젠의 카르보닐화 반응 연구: N,N'-디페닐우레아 합성)

  • Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1079-1085
    • /
    • 1999
  • An investigation was made of the effect of various transition metal catalysts, ligands, and a promoter on the synthesis of N,N'-diphenylurea(DPU) from nitrobenzene, aniline, and carbon monoxide. Homogeneous Pd and Ni catalysts were found to be highly efficient, giving almost quantitative isolated DPU yields at 100% nitrobenzene conversion. Bidentate ligand, 1,3-bis(diphenylphosphino)proane(dppp) showed much improved activity and significantly different reactivity relative to the usual monodentate $PPh_3$ ligand in the presence of Ni and Pd catalysts. These results were inferred to the effect of the cis coordination of bidentate dppp ligand on the metal. The use of a promoter $Et_4NCl$ was indispensable in the case of $PPh_3$, yet inhibited the reaction if used with dppp. It was possible to reuse the Pd-dppp catalyst system, although the catalytic activity was reduced slowly.

  • PDF

X-ray absorption spectroscopic study of MgFe2O4 nanoparticles

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Joon Kon;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.230.2-230.2
    • /
    • 2015
  • Nanoparticles of magnesium ferrite are used as a heterogeneous catalyst, humidity sensor, oxygen sensor and cure of local hyperthermia. These applications usually utilize the magnetic behavior of these nanoparticles. Moreover, magnetic properties of nanoferrites exhibit rather complex behavior compared to bulk ferrite. The magnetic properties of ferrites are complicated by spins at vortices, surface spins. Reports till date indicate strong dependency on the structural parameters, oxidation state of metal ions and their presence in octahedral and tetrahedral environment. Thus we have carried out investigation on magnesium ferrite nanoparticles in order to study coordination, oxidation state and structural distortion. For present work, magnesium ferrite nanoparticles were synthesized using nitrates of metal ions and citric acid. Fe L-edge spectra measured for these nanoparticles shows attributes of $Fe^{3+}$ in high spin state. Moreover O K-edge spectra for these nanoparticles exhibit spectral features that arises due to unoccupied states of O 2p character hybridized with metal ions. Mg K-edge spectra shows spectral features at 1304, 1307, 1311 and 1324 eV for nanoparticles obtained after annealing at 400, 500, 600, 800, 1000, and $1200^{\circ}C$. Apart from this, spectra for precursor and nanoparticles obtained at $300^{\circ}C$ exhibit a broad peak centered around 1305 eV. A shoulde rlike structure is present at 1301 eV in spectra for precursor. This feature does not appear after annealing. After annealing a small kink appear at ~1297 eV in Mg K-edge spectra for all nanoparticles. This indicates changes in local electronic structure during annealing of precursor. Observed behavior of change in local electronic structure will be discussed on the basis of existing theories.

  • PDF

스퍼터링 방법으로 성장시킨 나노구조의 Ga 농도 변화에 따른 형상 변화

  • Kim, Yeong-Lee;U, Chang-Ho;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • ZnO is of great interest for various technological applications ranging from optoelectronics to chemical sensors because of its superior emission, electronic, and chemical properties. In addition, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. To date, several approaches have been proposed for the growth of one-dimensional (1D) ZnO nanostructunres. Several groups have been reported the MOCVD growth of ZnO nanorods with no metal catalysts at $400^{\circ}C$, and fabricated a well-aligned ZnO nanorod array on a PLD prepared ZnO film by using a catalyst-free method. It has been suggested that the synthesis of ZnO nanowires using a template-less/surfactant-free aqueous method. However, despite being a well-established and cost-effective method of thin film deposition, the use of magnetrons puttering to grow ZnO nanorods has not been reported yet. Additionally,magnetron sputtering has the dvantage of producing highly oriented ZnO film sat a relatively low process temperature. Currently, more effort has been concentrated on the synthesis of 1D ZnO nanostructures doped with various metal elements (Al, In, Ga, etc.) to obtain nanostructures with high quality,improved emission properties, and high conductance in functional oxide semiconductors. Among these dopants, Ga-doped ZnO has demonstrated substantial advantages over Al-doped ZnO, including greater resistant to oxidation. Since the covalent bond length of Ga-O ($1.92\;{\AA}$) is nearly equal to that of Zn-O ($1.97\;{\AA}$), high electron mobility and low electrical resistivity are also expected in the Ga-doped ZnO. In this article, we report the successful growth of Ga-doped ZnO nanorods on c-Sapphire substrate without metal catalysts by magnetrons puttering and our investigations of their structural, optical, and field emission properties.

  • PDF

Synthesis and Catalytic Characteristics of Thermally Stable TiO2/Pt/SiO2 Hybrid Nanocatalysts (고온에서 안정적인 TiO2/Pt/SiO2 하이브리드 나노촉매의 제작 및 촉매 특성)

  • Reddy, A. Satyanarayana;Jung, Chan-Ho;Kim, Sun-Mi;Yun, Jung-Yeul;Park, Jeong-Young
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.532-537
    • /
    • 2011
  • Thermally stable $TiO_2$/Pt/$SiO_2$ core-shell nanocatalyst has been synthesized by chemical processes. Citrated capped Pt nanoparticles were deposited on amine functionalized silica produced by Stober process. Ultrathin layer of titania was coated on Pt/$SiO_2$ for preventing sintering of the metal nanoparticles at high temperatures. Thermal stability of the metal-oxide hybrid catalyst was demonstrated heating the sample up to $600^{\circ}C$ in air and by investigating the morphology and integrity of the structure by transmission electron spectroscopy. The surface analysis of the constituent elements was performed by X-ray photoemission spectroscopy. The catalytic activity of the hybrid catalysts was investigated by CO oxidation reaction with oxygen as a model reaction.