• 제목/요약/키워드: metal activated carbon

검색결과 168건 처리시간 0.028초

셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화 (SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects)

  • 김은애;배병철;이철위;이영석;임지선
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.394-399
    • /
    • 2015
  • 본 연구에서는 Cu 촉매가 도입된 활성탄소섬유를 제조하여 고효율 $SO_2$ 흡착재를 제조하였다. 라이오셀 섬유를 내염화 및 탄화공정을 통해 탄소섬유를 얻었으며, $SO_2$ 흡착능을 향상시키기 위해 KOH 활성화를 사용하여 높은 비표면적 및 균일한 미세기공구조를 부여하였다. 활성탄소섬유에 Cu 촉매를 도입하기 위하여 $Cu(NO_3)_2{\cdot}3H_2O$ 수용액을 사용하였으며, 공정 시 i) 탄소섬유 내 산소 관능기의 분해반응을 촉진하고, ii) 산화구리 및 질산염의 분해로 oxygen radical이 생성되어 탄소섬유의 활성화 반응을 촉진시켰다. 이로 인해 활성탄소섬유의 미세공과 중기공 형성효과 및 탄소섬유 표면에 고르게 분산된 Cu 촉매를 확인하였다. Cu 촉매 도입 후, 활성탄소섬유에 비해 비표면적 및 미세공의 비율이 약 10% 이상 증가되었고, $SO_2$ 흡착능이 149% 이상 향상된 결과를 얻을 수 있었다. Cu 촉매도입공정 시, 전이금속 촉매효과에 의하여 발달된 미세공, 중기공 및 비표면적에 의한 물리적 흡착과 도입된 Cu 촉매에 의한 $SO_2$ 가스의 화학적 흡착반응의 시너지 효과에 기인하여 $SO_2$ 흡착능이 향상된 것으로 사료된다.

폐 활성탄을 이용한 타일 제조 및 특성 평가에 관한 연구 (A Study on the Production of Tile using Waste Activated Carbon and its Character Evaluation)

  • 박홍재;김민수;정징운;정운;이봉헌;김영식;박연규;정성욱
    • 한국환경보건학회지
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2001
  • The tiles were manufactured using a mixture of the TK material(a raw material in making tile) and Cu-Cr-Ag impregnated activated carbon(ASC Charcoal). The extraction character of heavy metals in making tile was evaluated and the manufacturing conditions of tile were studied. The heavy metals in the mixture-before and after the tile was production of tiles was successful and as a result of heavy metal analysis, the tile showed that the concentration of heavy metal after the production of tiles was lower than that of the before one. The concentration of eluted heavy metal by acidic and basic solutions was low and the quality of the produced tile was similar to the commercial one. The result of this study suggested that the waste ASC charcoal was used to produce good tiles and it also might reduce soil pollution.

  • PDF

금속 처리된 활성탄소의 흡착과 항균특성 (Adsorption and Antibacterial Properties of Metal Treated Activated Carbon)

  • 오원춘;김범수;이영훈;김종규;김명건;고영신
    • 분석과학
    • /
    • 제11권4호
    • /
    • pp.266-270
    • /
    • 1998
  • 활성탄의 특성을 이용하여 상업적으로 문제시되고 있는 수질 및 공기 정화용 항균성 Ag-활성탄을 제조하여 질소 흡착 특성, 표면구조 및 박테리아 저항성에 대하여 조사하였다. 높은 비표면적을 가진 활성탄에 대하여 $AgNO_3$을 사용하여 Ag-활성탄을 제조하였다. $AgNO_3$ 몰농도에 따라 침적된 Ag-활성탄의 비표면적 값은 $740-1112.2m^2/g$의 범위에 분포하고 있었으며, $AgNO_3$ 몰농도가 증가함에 따라 비표면적이 작아지는 경향을 나타내어 흡착된 Ag가 원료 활성탄의 표면구조에 영향을 주었다. SEM결과에 의하면, Ag 함침에 따라 흡착제의 외부 표면에 미세 동공에서 윈도우 블럭킹 효과를 나타내었다. 항균 실험을 위하여 박테리아로서 대장균(colon bacillus)의 일종인 Escherichia coli를 사용하였으며, Ag가 흡착되지 않은 활성탄의 경우에 있어서는 활성을 전혀 나타내지 않았으며, 흡착된 Ag의 양이 증가됨에 따라 활성의 범위가 증가함을 알 수 있었다.

  • PDF

금속유기골격체(Metal-organic Framework) 소재가 첨가된 다공성 활성탄소 복합재료 전극 기반의 에너지 저장 매체 제조 및 전기화학적 특성 분석 (Fabrication and analysis of electrochemical performance for energy storage device composed of metal-organic framework(MOF)/porous activated carbon composite material)

  • 이규석;정현택
    • 한국응용과학기술학회지
    • /
    • 제37권2호
    • /
    • pp.260-267
    • /
    • 2020
  • 본 연구에서는 "이온젤" 이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol) 기반의 고체 전해질에 이온성 액체 BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전고체 전해질과 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료를 이용하여 슈퍼커패시터를 제작하였으며, 유기골격체의 유 무에 따른 전기화학적 특성을 분석하여 보았다. 슈퍼커패시터의 전기화학적 특성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 금속유기골격체가 함유되지 않은 슈퍼커패시터의 전기용량값은 380 F/g 으로 확인 할 수 있었고, 이 값은 금속유기골격체를 첨가하였을 때 340 F/g로 감소하는 현상을 확인할 수 있었다. 이러한 결과로 1 wt%의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료되며 이러한 결과를 바탕으로 금속유기골격체의 첨가량을 최적화 할 필요가 있다고 판단된다.

페놀 수지로부터 유도된 금속이 함유된 활성탄의 특성화 (Characterization of metal-containing activated carbon derived from phenolic resin)

  • 오원춘;장원철;김범수
    • 분석과학
    • /
    • 제14권4호
    • /
    • pp.349-355
    • /
    • 2001
  • 금속 염화물을 이용한 화학적 활성화 방법으로 페놀 수지로부터 미세기공과 증기공을 가지는 활성탄을 제조하였다. 본 연구에서 질소 흡착 데이터는 생성된 활성탄 표면의 물리적 성질을 특성화하는데 사용하였다. 표면 특성과 공동분포 분석 결과로부터, 페놀수지는 $962.3m^2/g$ 이상의 비표면적을 가지는 미세기공과 증기공을 가지는 활성탄을 생성함을 나타내었다. 이러한 동공구조를 가지는 활성탄은 금속 염화물($CdCl_2$, $CuCl_2$)의 양을 조절하여 만들어 졌으며, 동공의 발달은 금속염화물의 양이 증가함에 따라 증가함을 알 수 있었다. 열역학적인 DSC 데이터로부터, 첫 번째 발열반응의 엔탈피 변화 값(${\Delta}H$)은 금속염화물의 증가와 함께 증가하였다.

  • PDF

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

Removal of Pb(II) and Cd(II) From Aqueous solution Using Oxidized Activated Carbons Developed From Pecan Shells.

  • Youssef, A.M.;EL-Khouly, Sahar M.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.8-16
    • /
    • 2008
  • Oxidized activated carbons were prepared by reacting steam-activated carbon developed from pecan shells with nitric acid of varying strength (15, 30, 45 and 60%). The textural properties and the chemistry of the surface of the non-oxidized and of the oxidized carbons were determined from nitrogen adsorption and base neutralization capacities. The uptake of Pb(II) and Cd(II) from aqueous solution by these carbons was determined by kinetic and equilibrium experiments as well as by the column method. Treatment with nitric acid brought about drastic decrease in surface area and remarkable increase in the pore size of the carbon with these changes depending on the strength of nitric acid. Nitric acid increased the surface acidity by developing new surface oxygen functional groups of acidic nature. $HNO_3$-oxidized carbons exhibited high adsorption capacities for Pb(II) and Cd(II). The adsorption of these ions increased with the decrease of the surface pH of the carbon and with the increase of the solution pH from 2.5 to 6 and 7. The amount adsorbed from lead and cadmium was also related to the amount of surface acidity, the pH of the point of zero charge and on some metal ion parameters. Cadmium and lead uptake by the investigated carbons followed pseudo-second order model and the equilibrium sorption data fitted Langmuir adsorption model.

목질(木質) 어항(漁港) 폐기물(廢棄物)을 원료(原料)로 한 황산(黃酸)에 의한 활성탄(活性炭) 제조(製造) (Production of Activated Carbon from Woody Fishing Port Wastes Using Sulfuric Acid as Activating Agent)

  • 김동수;이정언
    • 자원리싸이클링
    • /
    • 제15권2호
    • /
    • pp.50-57
    • /
    • 2006
  • 해양에서 발생하는 목질 폐기물의 재활용 방안의 일환으로 폐 어류 상자를 원료로 활성탄을 제조하는 방안을 검토하였다. 폐 황산을 활성화제로 하여 온도에 따른 활성탄의 흡착능의 변화를 검토한 결과 실험조건에서 $650^{\circ}C$부근에서 최대의 흡착능이 관찰되었으며 이보다 온도가 상승할 경우 열적 분해로 인해 흡착능이 감소하는 것으로 나타났다. 활성시간은 약 120분 정도가 적절한 것으로 파악되었으며 $550^{\circ}C$ 및 60분의 활성화 조건에서 원료 물질과 활성화제의 무게비가 1:3의 조건일 때 최대 흡착능이 관찰되었다. 활성화 조건은 황산의 농도가 1.2M일 때 최적인 것으로 조사되었으며 활성화제의 종류에 따른 활성능을 비교한 결과 황산은 질산에 비해 활성탄의 흡착능면에 있어서는 그 효과가 더욱 큰 것으로 파악되었으나 수율에 미치는 영향은 두 경우 뚜렷한 차이가 없는 것으로 나타났다. 제조된 활성탄은 중성 영역에서 분산도가 높은 것으로 관찰되었으며 전 pH 영역에 걸쳐 음의 전하를 띠는 것으로 파악되어 금속 이온 함유 폐수에 효과적인 흡착제로 사용될 수 있을 것으로 사료되었다.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 1998년도 가을 학술발표회 프로그램
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Chemical Activation Characteristics of Pitch-Based Carbon Fibers by KOH

  • Jang, Jeen-Seok;Lee, Young-Seak;Kim, In-Ki;Yim, Going
    • Carbon letters
    • /
    • 제1권2호
    • /
    • pp.69-75
    • /
    • 2000
  • Naphtha cracking bottom oil was reformed with heat treatment and then spun at $310^{\circ}C$. These pitch-based carbon fibers were carbonized at $1000^{\circ}C$ after oxidation at $280^{\circ}C$, for 90 min. These fibers were chemically activated with molar ratio of KOH/CF (1 : 1) at different temperatures ($250{\sim}900^{\circ}C$) for 1 hr. The process of activation was characterized with DTA, TGA, BET surface area and pore size distribution. The activation of fibers by KOH was performed by several process. One is the reduction process that carbon fiber was reacted with $K_2O$ produced from dehydration process above $400^{\circ}C$. The other is the process that $K_2CO_3$ was directly reacted with carbon fiber. At $800^{\circ}C$, the activation was performed by catalyzed mechanism that $K_2O$ was obtained from the reaction of metal potassium with $CO_2$, then was changed to $K_2CO_3$. At $870^{\circ}C$, the activation was also observed that activation mechanism was promoted by metal catalyst with $CO_2$ from decomposition of $K_2CO_3$. The specific surface area of prepared activated carbon fibers was dependent on the activation mechanism. The specific surface area was in the range of $1519{\sim}2000\;cm^3/g$ and was the largest prepared at $870^{\circ}C$. The pores developed were mostly micropores which was very narrow and uniform. The total pore volume was $0.58{\sim}0.77\;cm^3/g$.

  • PDF