• Title/Summary/Keyword: metabolite analysis

Search Result 448, Processing Time 0.027 seconds

Regional and Varietal Variation of 1-Deoxynojirimycin (DNJ) Content in the Mulberry Leaves

  • Kim, Iksoo;Kim, Jin-Won;Lee, Heui-Sam;Ha, Nam-Kyu;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.141-147
    • /
    • 2001
  • This study was carried out to find out whether there exists any content variation in 1-deoxynojirimycin (DNJ) among regional and varietal mulberry leaves. HPLC analysis was performed for 22 samples collected from several localities in Korea and Tsushima Islands Japan. The highest content was observed in the Cheongilppong sample collected at Youngchun City, Kyungsangbuk Province (1,882.7 $\mu\textrm{g}$/g DW), whereas lowest content was observed in the Cheongilppong sample collected at Jiniu City, Kyungsangnam Province (395.65 $\mu\textrm{g}$/g DW). In the comparison of regional samples of Kaeryangppong variety, DNJ content was highest in the order of Woniu City (1,460.1) > Boungun (999.85) > Hweongsung-gun (939.12) > Cheongju City (688.78). In case of Cheongilppong, DNJ content was highest in the order of Youngchun City (1.882.8) > Sanchung-gun (1,125.3) > Sunchon City (649.17) > Byunsan-myon (441.54) > Jinju City (395.65). Average content of regional samples was higher in Kaeryangppong (1,021.7 $\mu\textrm{g}$/g DW) than that of Cheongilppong (898.87 $\mu\textrm{g}$/g DW). Average DNJ content of the wild mulberry loaves collected from Cheju Island and Tsushima Island (1,012.9$\mu\textrm{g}$/g DW) was high enough to reach to that of the regional Kaeryangppong samples. In the comparison among varietal samples collected in Suwon, the highest DNJ content was observed in YK209 (768.16 $\mu\textrm{g}$/g DW), amongst overall low DNJ content of the varietal samples. Considering a few pieces of information from our data, DNJ content appears not to be influenced solely by annual temperature of the planted areas.

  • PDF

Physiological Responses of Rice Seedlings to Butachlor (Butachlor에 대한 벼 유묘의 생리적 반응)

  • Tsai, Wen-Fu
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.247-253
    • /
    • 1995
  • The herbicide butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-di-methylphenyl) acetamide] is widely used by farmers as a tool for weed management of transplanted rice(Oryza sativa L.) in Taiwan. The herbicide did not stop germination of rice and weed seeds, but strongly inhibited the subsequent growth of young shoots and roots. The inhibition was also strong on established seedlings. However, they could recover to normal growth after the herbicide effect disappeared. Butachlor greatly decreased the endogenous indole-3-acetic acid (IAA) but increased the endogenous abscisic acid (ABA) contents of rice seedlings. Addition of lAA into growth medium (Hoagland's solution) partly relieved growth inhibition. Pretreatment of both gibberellic acid ($GA_3$) and IAA 24 hours before butachlor treatment almost completely alleviated the butachlor-interfere with GA and/or IAA metabolism or their action resulting in the growth inhibition of rice. Butachlor was readily absorbed by rice roots. During 24 hours of uptake experiment, 32% of the applied herbicide was absorbed. Pretreatment of the herbicide for 2 days did ncx affect the absorption. Of the absorbed herbicide, 80% remained in roots, only 20% transported into shoots, and more than 50% was metabolized to water soluble substances. Thin-layer chromatographic (TLC) analysis indicated that the Rf value of the most abundant metabolite was butachlor-glutathione conjugate. Rice, barnyardgrass (Echinochloa crus-galli (L.) Beauv.), and monochoria (Monochoria vaginalis Presl) seedlings contained relatively high level of non-protein thiols, while the glutathione S-transferase (GST) activity was found highest in rice, barnyardgrass the next, monochoria the lowest. The difference in GST activity among these species might be related to their sensitivity to butachlor.

  • PDF

Study on biosynthesis of ginsenosides in the leaf of Panax ginseng by seasonal flux analysis

  • Kim, Dongmin;Han, Jaehong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.315-322
    • /
    • 2019
  • Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.

Biodegradation of Fungicide Tolclofos-methyl by Sphingomonas sp. 224 (Sphingomonas sp. 224 균주에 의한 살균제 tolclofos-methyl의 분해)

  • Kwak, Yun-Young;Shin, Kab-Sik;Lee, Sang-Man;Kim, Jang-Eok;Rhee, In-Koo;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.388-395
    • /
    • 2010
  • In order to decrease level of an organophosphorus fungicide, tolclofos-methyl, from in situ ginseng cultivating soil, we isolated a tolclofos-methyl degrading bacteria from ginseng cultivating soil samples. The bacterial strain removed tolclofos-methyl around 95% after 3 days incubation with complete liquid media. The strain was identified as Sphingomonas sp. by 16S rDNA sequence comparison, and designated as Sphingomonas sp. 224. Through the GC-MS analysis, Sphingomonas sp. 224 was proposed to have an initiative degradation pathway generating the metabolite such as 2,6-dichloro-4-methyl phenol compound from tolclofos-methyl. In addition, Sphingomonas sp. 224 was confirmed representing the effective degrading capability to tolclofosmethyl in situ soil.

Bioremediation Bentazon using Minari(Oenanthe stolonifera DC.) Plant. (미나리(Oenanthe stolonifera DC.)를 이용한 Bentazon의 생물학적 분해)

  • Shin, Joung-Du;Lee, Myung-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.207-211
    • /
    • 1997
  • Laboratory experiments were conducted to the potential ability of bioremediation with bentazon such as determining the absorption, translocation, and metabolism of $^{14}C-Bentazon$ in minari after foliar applications. The absorption and translocation of $^{14}C-bentazon$ were compared when applied to foliar of minari. In foliar applications, 21% was observed in treated leaves, 66% remained in water extracts of leaf surfaces, and 13% was found in the epicuticular wax layer after 2d. Translocation of the herbicide from treated leaves to roots was very low(79 to 9%). Analysis of methanol-soluble extracts of $^{14}C$ indicated that more than 60% of the foliarapplied herbicide was metabolized in all plant sections after 2d. However, 77% or more of the bentazon was degraded in roots and shoots 2d after root absorption. The major metabolite in these experiments was an unknown compound that was less polar than bentazon and 6- and 8-hydroxy bentazon.

  • PDF

Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron (Zerovalent Iron에 의한 유기염소계 살충제 Endosulfan의 탈염소화)

  • Shin, Hyun-Su;Kim, Taek-Kyum;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.202-208
    • /
    • 2009
  • The dechlorination of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and its metabolite, endosulfan sulfate via reaction with zerovalent iron under various pH conditions was studied using aqueous solution. The reaction products, which were probably produced from endosulfan and endosulfan sulfate by ZVI were identified by GC-MS. The lower the pH of reaction solution, the higher the transformation rate of endosulfan and endosulfan sulfate. The transformation rates of endosulfan and endosulfan sulfate in pH 3.0 by ZVI were 28% and 90% but those of endosulfan and endosulfan sulfate in mixture solution of water/acetone were 65% and 92%, respectively. The pH of reaction solution after ZVI treatment was increased to pH 10. Endosulfan was hydrolyzed at pH 10 but endosulfan sulfate was not hydrolyzed. Two unknown peaks were produced from endosulfan sulfate by treatment of ZVI. As a result of GC-MS analysis, unknown peaks were guessed to be structural isomer substituted hydrogen for chlorine.

Bioeuqivalence Study of Nabumetone Tablets in Man

  • Lee, Young-Joo;Jang, Eun-Ju;Lee, Jeong-Uk;Han, Yong-Hae;Chung, Suk-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.340-345
    • /
    • 1995
  • A nebumetone tablet in development $(Navuton^R)$ was tested for its bioequivalence to the erference tablet $(Uniton^R)$. Seventeen healthy Korean male subjects participated in this study. Each subject received a 1-g dose of nabumetone (2tables each) in an unbalanced, randomized, two-way crossover investigation. Serum concentrations of 6-methoxy-2-na-phthylacetic acid (6-MNA), a major metabolite of nebumetone, were measured over 120 hr interval by a high-performance liquid chromatography. The maximum serum concentration $(C_{max})$ and time to reach the maximum concentration$(T_{max})$ were read directly, but area under the serum concentration time curve from time 0 to 120 hr (AUC) and mean residence time serum curves showed multiple peaks of 6-MNA in most subjects, and the $C_{max}$ and $T_{max}$ were read from the highest serum peaks. calculated bioavailability parameters for test and reference tablets were 148.6 : 1377.9 $\mug \cdot hr/ml$ for AUC; 25.2:23.1 $\mu/ml$ for $C_{max}$; 11.8:16.4 hr for $T_{max}$, and 42.6 : 43.8 hr for MRT, respectively. The paired t-test revealed no significant differences in all the parameters between the two tablets. Analysis ofl variance (ANOVA) revealed no significant differences between groups and formulations in all the parameters ($C_{max}$ and $T_{max}$, AUC and MRT) indicating the crossover design of the experiment was properly performed. But significant differences (p<0.05) between subject/groups and periods were found for all the parameters indicating substantial intersubject and interperiodic variations for these parameters.

  • PDF

Retinoic Acid Potentiates Nitric Oxide-Induced Dedifferentiation through the ERK Pathway in Rabbit Articular Chondrocytes (Retinoic acid의 ERK 신호전달경로를 통한 nitric oxide 유도 연골세포 탈분화 심화 기작)

  • Yu, Seon-Mi;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.534-541
    • /
    • 2011
  • Retinoic acid (RA), a metabolite of vitamin A, is known to regulate dedifferentiation of rabbit articular chondrocytes. The regulatory mechanism of dedifferentiation by RA is not yet understood. Thus, the effect of RA on the regulation of nitric oxide (NO)-induced dedifferentiation was investigated in rabbit articular chondrocytes. RA caused loss of the differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. RA also accelerated NO-induced dedifferentiation in rabbit articular chondrocytes as detected by expression of type II collagen and Sox-9 using Western blot analysis and production of sulfated proteoglycan using Alcain blue staining. Further, RA potentiated NO-induced activation of ERK. Inhibition of ERK with PD98059 (PD) recovered the expression of type II collagen and Sox-9 and production of sulfate proteoglycan in NO-induced dedifferentiated chondrocytes by RA treatment. Our findings suggest that RA accelerates NO-induced dedifferentiation of rabbit articular chondrocytes via the ERK pathway.

Comparative Bioavailability and Metabolism of Two Capsule Formulations of Fluoxetine in Human Volunteers (플루옥세틴 캅셀제의 지원자에 대한 생체이용율 및 대사율 비교)

  • Kang, Won-Ku;Park, Yong-Soon;Cho, Gyu-Haeng;Choi, Jun-Sik;Kwon, Kwang-Il
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.513-518
    • /
    • 1998
  • Fluoxetine is a nontricyclic antidepressant which blocks serotonin reuptake selectively. Its N-demethyl metabolite, norfluoxetine is also selective inhibitor of serotonin uptake . This study was carried out to compare the bioavailability of Myung-in fluoxetine (20mg/cap.) with that of Prozac$^{\circde{R}}$. The bioavailability was conducted on 24 healthy volunteers who received a single dose (80mg) of each drug in the fasting state, in a randomized balanced 2-way crossover design. After closing, serial blood samples were collected for a period of 48 hours, Plasma was analyzed for fluoxetine and norfluoxetine by a sensitive and validated HPLC assay. The major pharmacokinetic parameters ($AUC_{0-48\;hr}$, Cmax, Tmax , $AUC_{inf.}$, MRT. $T_{1/2}$, Vd and Cl) were, calculated from the plasma fluoxetine concentration-time data of each volunteer. The microcomputer program, 'WinNonlin' was used for compartmental analysis. A two-compartment model with first-order input, first-order output and no lag time was chosen as the most appropriate pharmacokinetic model. The data were best described by using a weighting factor of $1/y^2$. Though the plasma fluoxetine concentrations of Myung-in fluoxetine were higher than those of Prozac$^{\circde{R}}$ at all observed time from 7.9% to 16.9% (P<0.05 at 6.7 and 10 hr), the bioavailability of Myung-in fluoxetine appeared to be bioequivalent with that of Prozac$^{\circde{R}}$. There were no statistical significant differences between the two drugs in all pharmacokinetic parameters including $AUC_{0-48\;hr}$ of norfluoxetine.

  • PDF

Quantitative Analysis of Lovastatin in Human Plasma and urine by Reversed-Phase High-Performance Liquid Chromatography (역상 고속액체크로마토그라프법을 이용한 혈장 및 뇨 중 로바스타틴의 정량)

  • Choi, Hye-Jin;Kim, Myoung-Min;Choi, Kyung-Eob
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.473-479
    • /
    • 1998
  • Lovastatin (LOVA), a fungal metabolite isolated from cultures of Aspergillus terreus, is a competitive HMG-CoA reductase inhibitor used for the treatment of primary hyper cholesterolemia, and has also been shown to suppress growth in a variety of non-glioma tumor cell lines. A sensitive reversed-phase high-perfonnance liquid chromatographic method with ultraviolet (UV) absorbance detection has been developed to quantitate LOVA in human plasma and urine samples using liquid-liquid extraction procedure. Baseline separation of LOVA and internal standard, simvastatin was achieved on a Novapak $C_{18}$ analytical column with a mobile phase containing 0.025M $NaH_2PO_4$: CAN (35:65, v/v%), adjusted pH to 4.5. The flow rate was set at 1.5ml/min, and the column effluent was monitored by a UV detection at 238nm. The limit of quantification was determined to be 0.5${\mu}$g/ml while extraction efficiency of LOVA ranged from 73.4-82.9% at LOVA concentrations of 0.5 to 10${\mu}$g/ml. Good linearity with correlation coefficients greater than 0.999 was obtained in the range of LOVA concentrations from 0.5 to 10${\mu}$g/ml. The accuracy and the precision were proven excellent with relative standard deviation (RSD, %) and relative error (RE, %) of less than 4.2 and 4.0, respectively. Intraday precision, evaluated at five LOVA concentrations (0.5, 1, 2, 5, 10${\mu}$g/ml) and expressed as RSD ranged from 0-1.82% while the interday precision at the same concentrations ranged from 0.7-10.5%. The analytical method described was then successfully employed for the determination of LOVA concentrations in plasma samples obtained during a phase II clinical trial using high doses of LOVA (30-40mg/kg/day). This method could be further utilized for the ongoing pharmacolkinetic studies and therapeutic drug monitoring of the high-dose LOVA therapy in adenocarcinoma patients.

  • PDF