• Title/Summary/Keyword: metabolite analysis

Search Result 447, Processing Time 0.027 seconds

Degradation of Anthracene by a Pseudomonas strain, NGK1

  • Shinde Manohar;Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Pseudomonas sp. NGK1, isolated by naphthalene enrichment culture technique, is capable of degrading anthracene as a sole source of carbon and energy. The organism degraded anthracene through the intermediate formation of 1,2-dihydroxyanthracene, 2-hydroxy-3-naphthoic acid, salicylate, and catechol. The intermediates were isolated and characterized by TLC, spectrophotometry, and HPLC analysis. The cell free extract of anthracene-grown cells showed activities of anthracene dioxygenase, 2-hydroxy-3-naphthylaldehyde dehydrogenae, 2-hydroxy-3-naphthoate hydroxylase, salicylate hydroxylase and catechol 2,3-dioxygenase. The formed catechol as a metabolite is degraded through meta-cleavage with the formation of ${\alpha}$-hydroxymuconic semi-aldehyde.

  • PDF

Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures

  • Chattopadhyay, Saurabh;Farkya, Sunita;Srivastava, Ashok K.;Bisaria, Virendra
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.138-149
    • /
    • 2002
  • Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stage etc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.

Metabolomics, a New Promising Technology for Toxicological Research

  • Kim, Kyu-Bong;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2009
  • Metabolomics which deals with the biological metabolite profile produced in the body and its relation to disease state is a relatively recent research area for drug discovery and biological sciences including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate analysis, has been considered a promising technology because of its advantage over other toxicogenomic and toxicoproteomic approaches. The application of metabolomics includes the development of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests, high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of multiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often shows changes in response to exposure to xenobiotics or disease-induced stress, because of the biological system's attempt to maintain homeostasis. In this review, we focus on the most recent advances and applications of metabolomics in toxicological research.

Separation of ε-poly-L-lysine from the fermentation broth of Streptomyces albulus (Streptomyces albulus 배양액으로부터 ε-poly-L-lysine의 분리)

  • Sun, Heung-Suk;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.77-83
    • /
    • 1999
  • Grown in the secondary broth of production media, the strain Streptomyces albulus has increased more the production of its metabolite ${\varepsilon}$-poly-L-lysine, one of poly(amino acid)s used as disinfecting food additives, than the strain in the primary culture of growth nutrients. Having the strain removed, the large concentrate obtained by ultrafiltrating the secondary culture broth. The concentrated production broth exchanged into followed by detecting in UV flowcell at 220nm the peptide bond of the components eluting the adsorbed proteins and polylysine with NaCl salt of gradient concentration, and has separated into five components. Among them the component in the fourth peak fraction has proved to be the pure ${\varepsilon}$-poly-L-lysine after the portion being hydrolyzed the fraction with HCl into amino acid followed by being the composing amino acid analysis.

  • PDF

Phenolic Acid Changes in Mycelia of Sclerotium rolfsii After Garlic and Onion Supplementation in a Broth Medium

  • Pandey, M.K.;Singh, D.P.;Singh, U.P.
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • High performance liquid chromatographic (HPLC) analysis of mycelia of Sclerotium rolfsii grown in broth medium supplemented with garlic (Allium sativum) and onion (Allium cepa) was carried out to estimate qualitative and quantitative changes in phenolic acids. Several phenolic acids, such as gallic, chlorogenic; ferulic, o-coumaric and cinnamic acids were detected in varied amounts in mycelia grown on such media as compared to control. Phenolic acids represents a wide range of secondary metabolite found in the cells of plants and microbes including fungi. The growth characters of S. rolfsii in various supplements also varied from thin and transparent to thick and opaque.

Sampling and Analysis of Parathion in the Air and Urinary p-Nitrophenol for Parathion Manufacturing Workers (작업장 공기 중 파라티온과 작업자 소변 중 p-니트로페놀의 시료채취 및 분석)

  • Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.300-309
    • /
    • 2007
  • Although parathion is an organophosphate pesticide being legally applied for the purpose of agriculture and is being manufactured, parathion in the air and urinary p-nitrophenol, a metabolite of parathion, were not analysed in Korea. Air of the parathion manufacturing workplace was sampled by OVS-2 tubes using NIOSH 5600 and spot urine of workers was sampled at the end of shift. Parathion and urinary p-nitrophenol were analysed by GC/MS (5973 MSD connected with Agilent 6890 GC) and the protocol was included in this study. It was found that this protocol should be so sensitive that determining parathion in the air and urinary p-nitrophenol below level of ACGIH TLV and BEI be adequate. Another finding was that total sampling volume of air of NIOSH 5600 of 240 L should be adjusted to be less than 120 L due to breakthrough.

Effects of T-2 Toxin on Lipid Concentration in Rat Serum (T-2 toxin이 흰쥐 혈철 중 지질농도에 미치는 영향)

  • 강성조;박선자;이웅수;박정현;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.129-133
    • /
    • 1999
  • This study was designed to observe the effects of T-2 toxin on total cholesterol and lipid concentration in rat serum. T-2 toxin is a secondary metabolite produced by Fusarium sp. which is often found on agricultural products including cereals, and it is a causal material of liver injuries in cattle and humans. When we fed rats with standard diet treated with T-2 toxin, the body weight and feed consumption of rats treated T-2 toxin were decreased. As the results of lipid analysis, the concentrations of total cholesterol and free cholesterol in serum of treated rats were increased compared to non-fed control group, On the other hand, the levels of triglyceride and phospholipid in the serum of T-2 toxin treated experimental groups were declined. In conclusion, T-2 toxin largely influenced on the total cholesterol and lipid levels in rat serum.

  • PDF

Synthesis and Biopharmaceutical Studies of Cefazolin Butyrolactone Ester, a Novel Prodrug of Cefazolin (Cefazolin Butyrolactone Ester의 합성 및 생물약제학적 연구)

  • 이진환;조행남;최준식
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.331-338
    • /
    • 2003
  • A butyrolactone ester of cefazolin (CFZ-BTL) was synthesized by the esterification of cefazolin (CFZ) with $\alpha$-bromo-${\gamma}$-butyrolactone. The synthesis was confirmed by the spectroscopic analysis. The CFZ-BTL was more lipophilic than the CFZ when assessed by n-octanol/water partition coefficients at various pH. The CFZ-BTL itself did not show any antimicrobial activity in vitro, but after oral administration of CFZ-BTL to rabbits, exerted significant anti-microbial activity in serum samples when measured by the inhibion zone method in nutrient agar plates, due to conversion of CFZ-BTL to an active metabolite, probably CFZ, in the body. The CFZ-BTL was also converted into CFZ as confirmed by in vitro incubation study, with tissue homogenates (liver, blood and intestine) of rabbits. The liver showed the fastest conversion rate, probably via the hydrolysis mechanism. In vivo metabolism of CFZ-BTL to CFZ was also confirmed in vivo serum samples by HPLC. The oral bioavailability of CFZ-BTL in rabbits was 1.6-fold increased when compared to CFZ, resulting from followed by enhanced lipophilicity increased passive absorption in the intestine.

Microarray Analysis of Differential Gene Expression in Alcohol-Exposed Post Implantation Embryos

  • Kim, So-Hee;Rhee, Gyu-Seek;Kim, Soon-Sun;Sohn, Kyung-Hee;Kwack, Seung-Jun;Lee, Rhee-Da;Chae, Soo-Yeong;An, Sang-Mi;Hur, Man-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.204-204
    • /
    • 2002
  • Alcohol drinking during pregnancy can result in abnormal fetal development including fetal alcohol syndrome (FAS). The molecular mechanisms of FAS, however, is not completely elucidated. In the present study, we evaluated the developmental toxicity of ethanol and its metabolite, acetaldehyde using post implantation whole embryo culture and determined changes of gene expression by ethanol treatment by cDNA microarray.(omitted)

  • PDF