• Title/Summary/Keyword: metabolite M1

Search Result 285, Processing Time 0.023 seconds

The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts (염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향)

  • Yang, Ji Yeong;Lee, HanGyeol;Seo, Woo Duck;Lee, Mi Ja;Song, Seung-Yeob;Choi, June-Yeol;Kim, Hyun Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.

Study on Changes in Racehorses' Metabolites and Exercise-related Hormones before and after a Race

  • Yoo, In-Sang;Lee, Hong-Gu;Yoon, Sei-Young;Hong, Hee-Ok;Lee, Sang-Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1677-1683
    • /
    • 2007
  • Physiological changes in thoroughbred racehorses during the race were investigated by measuring concentrations of metabolites and exercise-related hormones before and after a race. The conversion point from anaerobic to aerobic exercise during the race was estimated subsequently. Blood samples were taken from the jugular vein of 53 thoroughbreds at different times -three h before and 45 min after- for measuring the concentrations of glucose, non-esterified fatty acids (NEFA), lactate, uric acid, ammonia, insulin, adrenocorticotrophin (ACTH) and cortisol according to the race distance. In accordance with the race distance, each metabolite increased in concentration compared with the level before the race. The level of glucose, in particular, increased from $56.18{\pm}3.20$ mg/dl before the race to $148.82{\pm}8.82$ mg/dl after the race for horses that raced 1,400 m, showing a significant increase of 165% (p<0.001). The concentration of NEFA rose from $76.77{\pm}5.59$ uEq/L to $335.85{\pm}35.39$ uEq/L, up 337% (p<0.01) after a 1,400 m race. Exercise-related hormones also showed similar changes. The level of insulin dropped the most in horses that raced 1,400 m, by 42%, from $0.97{\pm}0.18$ to $0.56{\pm}0.05\;{\mu}g/L$ (p<0.5); however, ACTH and cortisol jumped significantly at 1,800 m, from $20.17{\pm}2.12$ to $551.45{\pm}91.33$ pg/ml (p<0.5) and $1.13{\pm}0.16$ to $5.66{\pm}0.45\;{\mu}g/dl$ (p<0.01), respectively, representing the highest increase. Therefore, based on the changes in glucose, NEFA and insulin levels before and after the race, it was concluded that the race distance of 1,400 m represents the point where racehorses make a conversion from anaerobic to aerobic exercise.

Anti-HIV Activity of Dehydroaltenusin- a Metabolite from a Streptomyces sp.

  • Jabbar, Abdul;Shresta, Ajude Prashad;Hasan, Choudhury Mahmood;Rashid, Mohammad Abdur
    • Natural Product Sciences
    • /
    • v.5 no.4
    • /
    • pp.162-164
    • /
    • 1999
  • Dehydroaltenusin (1) was isolated from the chloroform extract of the culture filtrate of a Streptomyces sp. and its structure was determined from spectral data as well as by comparison with published values. In an XTT-based in vitro anti-HIV assay, dehydroaltenusin effectively inhibited the cytopathic effects of HIV infection at a concentration of $1-5\;{\mu}g/mL$.

  • PDF

Glycyrrhizin Attenuates MPTP Neurotoxicity in Mouse and $MPP^+$-Induced Cell Death in PC12 Cells

  • Kim, Yun-Jeong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • The present study examined the inhibitory effect of licorice compounds glycyrrhizin and a metabolite $18{\beta}$-glycyrrhetinic acid on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse and on the 1-methyl-4-phenylpyridinium ($MPP^+$)-induced cell death in differentiated PC12 cells. MPTP treatment increased the activities of total superoxide dismutase, catalase and glutathione peroxidase and the levels of malondialdehyde and carbonyls in the brain compared to control mouse brain. Co-administration of glycyrrhizin (16.8 mg/kg) attenuated the MPTP effect on the enzyme activities and formation of tissue peroxidation products. In vitro assay, licorice compounds attenuated the $MPP^+$-induced cell death and caspase-3 activation in PC12 cells. Glycyrrhizin up to $100{\mu}M$ significantly attenuated the toxicity of $MPP^+$. Meanwhile, $18{\beta}$-glycyrrhetinic acid showed a maximum inhibitory effect at $10{\mu}M$; beyond this concentration the inhibitory effect declined. Glycyrrhizin and $18{\beta}$-glycyrrhetinic acid attenuated the hydrogen peroxide- or nitrogen species-induced cell death. Results from this study indicate that glycyrrhizin may attenuate brain tissue damage in mice treated with MPTP through inhibitory effect on oxidative tissue damage. Glycyrrhizin and $18{\beta}$-glycyrrhetinic acid may reduce the $MPP^+$ toxicity in PC12 cells by suppressing caspase-3 activation. The effect seems to be ascribed to the antioxidant effect.

Potential Moracin M Prodrugs Strongly Attenuate Airway Inflammation In Vivo

  • Lee, Jongkook;Mandava, Suresh;Ahn, Sung-Hoon;Bae, Myung-Ae;So, Kyung Soo;Kwon, Ki Sun;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.344-353
    • /
    • 2020
  • This study aims to develop new potential therapeutic moracin M prodrugs acting on lung inflammatory disorders. Potential moracin M prodrugs (KW01-KW07) were chemically synthesized to obtain potent orally active derivatives, and their pharmacological activities against lung inflammation were, for the first time, examined in vivo using lipopolysaccharide (LPS)-induced acute lung injury model. In addition, the metabolism of KW02 was also investigated using microsomal stability test and pharmacokinetic study in rats. When orally administered, some of these compounds (30 mg/kg) showed higher inhibitory action against LPS-induced lung inflammation in mice compared to moracin M. Of them, 2-(3,5-bis((dimethylcarbamoyl)oxy)phenyl)benzofuran-6-yl acetate (KW02) showed potent and dose-dependent inhibitory effect on the same animal model of lung inflammation at 1, 3, and 10 mg/kg. This compound at 10 mg/kg also significantly reduced IL-1β concentration in the bronchoalveolar lavage fluid of the inflamed-lungs. KW02 was rapidly metabolized to 5-(6-hydroxybenzofuran-2-yl)-1,3-phenylene bis(dimethylcarbamate) (KW06) and moracin M when it was incubated with rat serum and liver microsome as expected. When KW02 was administered to rats via intravenous or oral route, KW06 was detected in the serum as a metabolite. Thus, it is concluded that KW02 has potent inhibitory action against LPS-induced lung inflammation. It could behave as a potential prodrug of moracin M to effectively treat lung inflammatory disorders.

Effect of Genistein on the Benzo(k)fluoranthene Regulated CYP1B1 Gene Expression (Genistein이 Benzo(k)fluoranthene에 의한 CYP1B1 유전자조절 작용에 미치는 영향)

  • Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2004
  • CYP1B1 enzyme metabolize PAHs and estradiol. CYP1B1 metabolize estradiol to 4-hydroxyestradiol that is considered as carcinogenic metabolite. Luciferase activity was induced about 20 folds over that control by 1 nM TCDD (2,3,7,8-tetrchlorodibenzo-p-dioxin) and these inductions were dose-dependent. Recent industrialized society, human hasbeen widely been exposed to widespread environmental contaminants such as PAHs (polycyclic aromatic hydrocarbon) that are originated from the incomplete combustion of hydrocarbons. PAHs are known to be ligands of the AhR (aryl hydrocarbon receptor). Induction of cytochrome P4501B1(CYP1B1) in cell culture is widely used as a biomarket for PAHs. Therefore we have studied the effect of PAHs in the human breast cancer cells MCF-7 to evaluate bioactivity of PAHs. Cytochrome P4501B1(CYP1B1) is known to be inducible by xenobiotic compounda such as policyclic aromatic hydrocarbon (PAH) and dioxins such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). And these induction of CYP1B1 is also regulated by many categories of chemicals. In order to investigate the effects of several chemicals on CYP1B1 gene expression in luciferase gene, and then transfected into these cells. After treatment of chemicals, the luciferase activity was measured. We examined effects of PAHs on the CYP1B1-lucifrease reporter gene and CYP1B1 mRNA level. Benzo(k)fluoranthene showed strong response to CYP1B1 promoter activity stimulation, and also CYP1B1 mRNAs increase in MCF-7 cells in a concentration-dependent manner. flvonoids such as genistein decreased B(k)F induced luciferase activity at low concentration. it exhibited stimulatory effect at high concentration.

  • PDF

Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.648-657
    • /
    • 2008
  • In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

Metabolism and excretion of novel pulmonary-targeting docetaxel liposome in rabbits

  • Wang, Jie;Zhang, Li;Wang, Lijuan;Liu, Zhonghong;Yu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • Our study aims to determine the metabolism and excretion of novel pulmonary-targeting docetaxel liposome (DTX-LP) using the in vitro and in vivo animal experimental models. The metabolism and excretion of DTX-LP and intravenous DTX (DTX-IN) in New Zealand rabbits were determined with ultra-performance liquid chromatography tandem mass spectrometry. We found DTX-LP and DTX-IN were similarly degraded in vitro by liver homogenates and microsomes, but not metabolized by lung homogenates. Ultra-performance liquid chromatography tandem mass spectrometry identified two shared DTX metabolites. The unconfirmed metabolite $M_{un}$ differed structurally from all DTX metabolites identified to date. DTX-LP likewise had a similar in vivo metabolism to DTX-IN. Conversely, DTX-LP showed significantly diminished excretion in rabbit feces or urine, approximately halving the cumulative excretion rates compared to DTX-IN. Liposomal delivery of DTX did not alter the in vitro or in vivo drug metabolism. Delayed excretion of pulmonary-targeting DTX-LP may greatly enhance the therapeutic efficacy and reduce the systemic toxicity in the chemotherapy of non-small cell lung cancer. The identification of $M_{un}$ may further suggest an alternative species-specific metabolic pathway.

Desulfurization of Dibenzothiophene and Diesel Oil by Metabolically Engineered Escherichia coli

  • Park, Si-Jae;Lee, In-Su;Chang, Yong-Keun;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.578-583
    • /
    • 2003
  • The desulfurization genes (dszABC) were cloned from Gordonia nitida. Nucleotide sequences similarity between the dszABC genes of G. nitida and those of Rhodococcus rhodochrous IGTS8 was 89%. The similarities of deduced amino acids between the two were 86% for DszA, 86% for DszB, and 90% for DszC. The G. nitida dszABC genes were expressed in several different Escherichia coli strains under an inducible trc promoter. Cultivation of these metabolically engineered E. coli strains in the presence of 0.2 mM dibenzothiophene (DBT) allowed the conversion of DBT to 2-hydroxybiphenyl (2-HBP), which is the final metabolite of the sulfur-specific desulfurization pathway. The maximum conversion of DBT to 2-HBP was 16% in 60 h. Recombinant E. coli was applied for the deep desulfurization of diesel oil supplemented into the medium at 5% (v/v). Sulfur content in diesel oil was decreased from 250 mg sulfur/1 to 212.5 mg sulfur/1, resulting in the removal of 15% of sulfur in diesel oil in 60 h.

Carbohydrate Drug (Acarbose) Analysis using by the On-line HPLC/Electrospray Ionization-Mass Spectrometry (On-line HPLC/ESI-MS를 이용한 탄수화물제제 (Acarbose) 분석연구)

  • Cho, Hyun-Woo;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.574-579
    • /
    • 2002
  • A sensitive and easy high performance liquid chromatograph (HPLC) / electrospray ionization (ESI)-mass spectrometric (MS) method has been developed for the quantitative and qualitative analyses of acarbose and its metabolites. After plasma samples were simply filtered with a syringe filter, the filtered plasma was analyzed by LC/MS. The standard calibration curve for acarbose was linear ($r^2=0.9963$) over the concentration range $0.1{\sim}10{\mu}g/m{\ell}$ in plasma. The metabolite component-I and II, which were metabolized by the ${\alpha}$-amylase and ${\beta}$-amylase, were found also by in vitro incubation. The developed method can be utilized to study acarbose and the other carbohydrates.