• Title/Summary/Keyword: metabolic pathways

Search Result 439, Processing Time 0.029 seconds

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Protein Expression in Pig Species Longissimus dorsi Muscles among Different Breeds and Growth Stages (돼지의 품종 및 성장 단계에 따른 등심조직의 단백질 발현 양상 비교, 분석)

  • Kim, Byung-Uk;Kim, Sam-Woong;Hong, Yeon-Hee;Jeong, Mi-Ae;Ryu, Yeon-Sun;Park, Hwa-Chun;Jung, Jong-Hyun;Kwon, Young-Min;Choi, In-Soon;Lee, Sang-Suk;Kim, Chul-Wook;Cho, Kwang-Keun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.713-722
    • /
    • 2012
  • When proteins extracted from longissimus dorsi muscles of Landrace and Berkshire at the finishing stage were compared by 2-DE, the Landrace demonstrated a quantitative increase in proteins related to slow skeletal muscle function, such as serum albumin precursor, troponin T (slow skeletal muscle; sTnT) and myoglobin. In contrast, the Berkshire exhibited comparatively elevated enzymes involved in metabolic pathways, fast skeletal muscle function, and energy production, such as heat shock 27-kDa protein (HSP27)-1, TnT (fast skeletal muscle; fTnT), muscle creatine kinase, phosphoglucomutase 1 (PGM1), triosephosphate isomerase (Tpi1) and adenylate kinase isoenzyme 1 (AK1). When compared to growing Berkshire, finishing Berkshire showed increased levels of aldehyde dehydrogenase 1 family, member L1 (ALDHL1), and muscle creatine kinase. In contrast, the growing Berkshire muscle had elevated levels of HSP27-1, sTnT, fTnT, serum albumin precursor, PGM1, AK1, and Tpi 1 as compared to the finishing Berkshire. The Landrace longissimus dorsi muscle may be composed of slower skeletal muscle, whereas Berkshire is composed of a faster skeletal muscle. The uniquely elevated quantities of proteins involved in skeletal muscle function, energy metabolism, and cytoskeleton function in the growing Berkshire indicate that these factors support growth and maintenance during the growing stage when compared with the finishing Berkshire.

Metabolic Study on C29-Brassinosteroids in Young Rice Plants (벼 유식물을 이용한 C29-Brassinosteroids의 대사)

  • Won, So-Yun;Joo, Se-Hwan;Kim, Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2007
  • It has been recently demonstrated the presence of not only $C_{28}-BRs$ biosysnthesis, but also $C_{27}-$ and $C_{29}-BRs$ biosynthesis in plants, suggesting that BRs biosynthesis are complicatedly connected to produce biologically active BR (s). This prompted us to investigation of metabolism of a $C_{29}-BR$, 28-homoCS in seedlings of rice from which $C_{29}-BRs$ such as 28-homoTE and 28-homoTY have been identified. In vitro enzyme conversion study using a crude enzyme solution prepared from rice seedlings revealed that 28-homoCS is converted into both CS and 26-nor-28-homoCS, but their reversed reaction did not occur. This indicated that 28-homoCS is biosynthetically converted into more biologically active $C_{28}-BR$, CS by C-28 demethylation and biodegraded into 26-nor-28-homoCS by C-26 demethylation. Next, bio-conversion of 28-homoCS to 28-homoBL was examined by the same enzyme solution. No 28-homoBL as a metabolite of 28-homoCS was detected, meaning that biosynthetic reaction for 28-homoCS to 28-homoBL is not contained, and main connection of $C_{28}-BRs$ and $C_{29}-BRs$ biosynthesis is between CS and 28-homoCS in the rice seedling. This study is the first demonstrated that $C_{29}-BRs$ and $C_{28}-BRs$ bionsynthetic pathways are connected, and that $C_{29}-BRs$ biosynthetic pathway is an alternative biosynthetic pathway to produce more biologically active $C_{28}-BR$, CS in plant.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

Detoxicating Effects of Oriental Herb Extract Mixtures on Nicotine and Dioxin (생약재 추출물의 nicotine 및 dioxin 해독효과)

  • Park, Ki-Moon;Hwang, Jin-Kook;Shin, Kyoung-Min;Kim, Hyun-Suck;Song, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.980-987
    • /
    • 2003
  • In this report, we investigated the detoxication effects of Saururus chinenis, Geranium nepalense, Lonicera japonica, Cassia obtusifolia, Glycyrrhiza uralensis, or their mixtures by employing acute toxicity tests for nicotine and dioxin. When fatal doses $(LD_{100}\;=\;42\;mg/kg)$ of nicotine were injected into the abdominal cavities of ICR mice, those treated with OHEM showed delayed paralysis, half the duration of hyperactivity, and a 73 % survival rate. The results revealed the strong detoxicating effects of the mixtures. We also measured the amount of the degradation product of nicotine and cotinine in humans. Consumption of OHEM promoted (he more specific) the metabolic pathways of nicotine, increasing continine excretion by 1.5 times. As a result the amount of cotinine in urine was reduced to less than 5% after treatment with OHEM. In order to test the toxicity of dioxin, we used TcnN(SD)BR rats exposed to TCDD. While TCDD treatment reduced the blood levels of hemoglobin and platelet, OHEM consumption relieved these effects and, furthermore, helped to recover the number of platelet to the normal level (p<0.05). Moreover, neutrophils (%) and monocytes (%), which were reduced by the injection of TCDD, recovered to normal levels upon treatment with OHEM. The amount albumin reduced by TCDD (p<0.05) normalized, while the activities of GOT and GTP increased by TCDD were reduced. Increases in total cholesterol and neutral fatty acids induced by TCDD were also reduced by OHEM injection (p<0.05). In the kidney, TCDD-induced rises in creatinine were suppressed by OHEM treatment, while decreases in iron levels from TCDD were raised to normal. The treatment of TCDD had more toxic effects in the blood and pancreas than on the liver, kidney and heart. On the other hand, the detoxication of OHEM had significant effects on the liver and pancreas. The normalization by OHEM of various clinical abnormalities induced by TCDD demonstrates the detoxicating effect of OHEM that ameliorates systemic metabolism not properly functioning.

Species-specific Expression of Rpia Transcript in Cumulus-oocyte-complex (난자-난구세포 복합체에서 발현하는 Rpia 유전자의 종 특이적 발현)

  • Kim, Yun-Sun;Yoon, Se-Jin;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • Objective: We previously identified differentially expressed genes (DEGs) between germinal vesicle (GV) and metaphase II (MII) mouse oocyte. The present study was accomplished as a preliminary study to elucidate the role of ribose 5-phosphate isomerase A (Rpia), the essential enzyme of the pentose phosphate pathway (PPP), in oocyte maturation. We observed expression of Rpia in the mouse and porcine oocytes. Methods: Expression pattern of the 11 MII-selective DEGs in various tissues was evaluated using RT-PCR and selected 4 genes highly expressed in the ovary. According to the oocyte-selective expression profile, we selected Rpia as a target for this study. We identified the porcine Rpia sequence using EST clustering technique, since it is not yet registered in public databases. Results: The extended porcine Rpia nucleotide sequence was submitted and registered to GenBank (accession number EF213106). We prepared primers for porcine Rpia according to this sequence. In contrast to the oocyte-specific expression in the mouse, Rpia was expressed in porcine cumulus and granulosa cells as well as in oocytes. Conclusion: This is the first report on the characterization of the Rpia gene in the mouse and porcine ovarian cells. Results of the present study suggest that the mouse and porcine COCs employ different mechanism of glucose metabolism. Therefore, the different metabolic pathways during in vitro oocyte maturation (IVM) in different species may lead different maturation rates. It is required to study further regarding the role of Rpia in glucose metabolism of oocytes and follicular cell fore exploring the regulatory mechanism of oocyte maturation as well as for finding the finest culture conditions for in vitro maturation.

Effects of Vitamin C on Residual Aflatoxin $B_1$ in Rat Sera Treated with Radiation and Aflatoxin $B_1$ (Vitamin C가 방사선과 Aflatoxin $B_1$을 투여한 흰쥐의 혈청 중 Aflatoxin $B_1$ 잔류량에 미치는 영향)

  • Chung, Do-Young;Kim, Han-Soo;Kang, Jin-Soon
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.374-382
    • /
    • 2011
  • Aflatoxin ($AFB_1$) is a potent hepatotoxic and hepatocarcinogenic mycotoxin in humans. It is also well-known to be accumulated in animal tissues via various metabolic pathways. This study was conducted to determine the effects of vitamin C on the residual $AFB_1$ in rat sera that were treated with radiation and $AFB_1$. Six week-old male Sprague-Dawley rats were randomly divided into five groups: a control group, $AFB_1$-treated group, the group treated with $AFB_1$ and vitamin C, the group treated with X-ray and AFB1, and the group treated with X-ray and $AFB_1$ with vitamin C. On the first day of the experiment, only one dose of X-rays was exposed to the entire liver at 1,500 cGy. Next, vitamin C was injected at 10 mg/kg body weight via intraperitoneal injection, followed 1 hr later by the administration of 0.4 mg/kg of $AFB_1$ via intraperitoneal injection. These treatments were then administered every three days over a period of 15 days. On the 16th day of treatments, the animals were sacrificed. The contents of $AFB_1$ in rat sera were determined via indirect competitive ELISA and HPLC method. In the quantitative analysis of $AFB_1$ in rat sera via ELISA, $5.17{\pm}0.34$ ng/mL of $AFB_1$ was detected in the $AFB_1$-treated groups, but the amount more significantly decreased to $3.23{\pm}0.76$ ng/mL in the groups treated with $AFB_1$ and vitamin C (p<0.01) than in the $AFB_1$-treated groups. The $AFB_1$ contents of the rat sera of the groups treated with X-ray and $AFB_1$ did not significantly decreased with the administration of vitamin C. The $AFB_1$ content of the rat sera that was analyzed via HPLC showed a tendency similar to that of the content that was analyzed via ELISA. With regard to these data, vitamin C was very effective in reducing $AFB_1$ residue in rat sera.

Inhibitory Effects of Locusta migratoria Ethanol Extracts on RANKL-induced Osteoclast Differentiation (RANKL 유도된 파골세포 분화에 대한 풀무치 에탄올 추출물의 분화 억제 효과)

  • Baek, Minhee;Seo, Minchul;Lee, Joon Ha;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Kim, Mi-Ae;Kim, Sunghyun;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1104-1110
    • /
    • 2019
  • Recently, there has been an increase in the elderly population of the world. Consequently, bone metabolic diseases such as osteoporosis are emerging as a social problem. Osteoclasts play a role in bone resorption, and osteoporosis is induced when bone resorption occurs excessively. Because currently used bone resorption inhibitors may cause side effects when used for a long period of time, it is necessary to develop a new material that effectively inhibits osteoclast differentiation. This study aimed to confirm the inhibitory effect of ethanol extract of Locusta migratoria on RANKL-induced osteoclast differentiation and its mechanism. The toxicity and proliferation effects of LME on RAW264.7 osteoclasts were measured by an MTS assay. There was no cytotoxicity or proliferation when the osteoclasts were treated with up to $2,000{\mu}g/ml$ of LME. In order to confirm the effect of LME on the differentiation of osteoclasts, osteoclasts were treated with RANKL alone or with LME for 3 days. As a result of a TRAP (tartrate-resistant acid phosphatase) assay, the increasing osteoclast differentiation by RANKL decreased in a concentration-dependent manner with the treatment of LME. In addition, LME suppressed the expression of differentiation-related marker genes (TRAP, RANK, NFATc1, and CK) and proteins (NFATc1 and c-Src) that had been increased by RANKL. Also, LME influenced the $NF-{\kappa}B$, ERK and JNK signaling pathways, resulting in the inhibition of osteoclast differentiation. These results suggest that LME may be used as a novel functional material for the prevention and treatment of osteoporosis by playing a role in inhibiting bone absorption.

Research and Development Trends on Omega-3 Fatty Acid Fortified Foodstuffs (오메가 3계 지방산 강화 식품류의 연구개발 동향)

  • 이희애;유익종;이복희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.161-174
    • /
    • 1997
  • Omega-3 fatty acids have been major research interests in medical and nutritional science relating to life sciences since after the epidemiologic data on Green3and Eskimos reported by several researchers clearly showed fewer per capita deaths from heart diseases and a lower incidence of adult diseases. Linolenic acid(LNA) is an essential fatty acid for human beings as well as linoleic acid(LA) due to the fact that vertebrates lack an enzyme required to incorporate a double bond beyond carbon 9 in the chain. In addition the ratio of omega-6 and 3 fatty acids seems to be important in terms of alleviation of heart diseases since LA and LNA competes for the metabolic pathways of eicosanoids synthesis. High consumption of omega-3 fatty acids in seafoods may control heart diseases by reducing blood cholesterol, triglyceride, VLDL, LDL and increasing HDL and by inhibiting plaque development through the formation of antiaggregatory substances like PGI$_2$, PGI$_3$ and TXA$_3$ metabolized from LNA. Omega 3 fatty acids also play an important role in neuronal developments and visual functioning, in turn influence learning behaviors. Current dietary sources of omega-3 fatty acids are limited mostly to seafoods, leafy vegetables, marine and some seed oils and the most appropriate way to provide omega-3 fatty acids is as a part of the normal dietary regimen. The efforts to enhance the intake of omega-3 fatty acids due to several beneficial effects have been made nowadays by way of food processing technology. Two different ways can be applied: one is add Purified and concentrated omega-3 fatty acids into foods and the other is to produce foods with high amounts of omega-3 fatty acids by raising animals with specially formulated feed best for the transfer of omega-3 fatty acids. Recently, items of manufactured and marketed omega-3 fatty acids fortified foodstuffs are pork, milk, cheese, egg, formula milk and ham. In domestic food market, many of them are distributed already, but problem is that nutritional informations on the amounts of omega-3 fatty acids are not presented on the labeling, which might cause distrust of consumers on those products, result in lower sales volumes. It would be very much wise if we consume natural products, result in lower sales volumes. It would be very much wise if we consume natural products high in omega-3 fatty acids to Promote health related to many types of adult diseases rather than processed foods fortified with omega-3 fatty acids.

  • PDF