• Title/Summary/Keyword: metabolic labeling

Search Result 29, Processing Time 0.029 seconds

Relative Quantification of Glycans by Metabolic Isotope Labeling with Isotope Glucose in Aspergillus niger

  • Choi, Soo-Hyun;Cho, Ye-Eun;Kim, Do-Hyun;Kim, Jin-il;Yun, Jihee;Jo, Jae-Yoon;Lim, Jae-Min
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.139-145
    • /
    • 2022
  • Protein glycosylation is a common post-translational modification by non-template-based biosynthesis. In fungal biotechnology, which has great applications in pharmaceuticals and industries, the importance of research on fungal glycoproteins and glycans is accelerating. In particular, the importance of quantitative analysis of fungal glycans is emerging in research on the production of filamentous fungal proteins by genetic modification. Reliable mass spectrometry-based techniques for quantitative glycomics have evolved into chemical, enzymatic, and metabolic stable isotope labeling methods. In this study, we intend to expand quantitative glycomics by metabolic isotope labeling of glycans in Aspergillus niger, a filamentous fungus model, by the MILPIG method. We demonstrate that incubation of filamentous fungi in a culture medium with carbon-13 labeled glucose (1-13C1) efficiently incorporates carbon-13 into N-linked glycans. In addition, for quantitative validation of this method, light and heavy glycans are mixed 1:1 to show the performance of quantitative analysis of various N-linked glycans simultaneously. We have successfully quantified fungal glycans by MILPIG and expect it to be widely applicable to glycan expression levels under various biological conditions in fungi.

A Review on Metabolic Pathway Analysis with Emphasis on Isotope Labeling Approach

  • Azuyuki, Shimizu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.237-251
    • /
    • 2002
  • The recent progress on metabolic systems engineering was reviewed based on our recent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS, (3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA), (6) design of metabolic regulation structure, and (7) identification of unknown pathways with isotope tracing by NMR. The main characteristics of metabolic engineering is to treat metabolism as a network or entirety instead of individual reactions. The applications were made for poly-3-hydroxybutyrate (PHB) production using Ralstonia eutropha and recombinant Escherichia coli, lactate production by recombinant Saccharomyces cerevisiae, pyruvate production by vitamin auxotrophic yeast Toluropsis glabrata, lysine production using Corynebacterium glutamicum, and energetic analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each approach were reviewed with their applications. The approach based on isotope labeling experiments gives reliable and quantitative results for metabolic flux analysis. It should be recognized that the next stage should be toward the investigation of metabolic flux analysis with gene and protein expressions to uncover the metabolic regulation in relation to genetic modification and/ or the change in the culture condition.

Dietary Factors Associated with Metabolic Syndrome Status in Korean Menopausal Women: Based on the 2016 ~ 2017 Korea National Health and Nutrition Examination Survey (한국 완경 여성의 대사증후군 위험인자와 관련된 식이요인 연구: 2016 ~ 2017 국민건강영양조사 자료 이용)

  • Park, Pil-Sook;Li, Mei-Sheng;Park, Mi-Yeon
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.6
    • /
    • pp.482-494
    • /
    • 2021
  • Objectives: This study evaluated dietary behavior and nutritional status according to the metabolic syndrome status in Korean menopausal women. Methods: The subjects were 1,392 menopausal women aged 50 to 64 who took part in the Korea National Health and Nutrition Examination Survey of 2016 and 2017. Subjects were classified into normal (NOR) group, pre-metabolic syndrome (Pre-MetS) group, and metabolic syndrome (MetS) groups according to the number of metabolic syndrome risk factors present. Results: The overall prevalence of metabolic syndrome was 33.7%. Using the NOR group as a reference, the odds of belonging to the MetS group in Model 1 adjusted for age were higher at 53% (OR = 1.53, 95% CI:1.011-2.307) for 'not used' subjects compared to 'used' subjects of the nutrition labeling system. Using the NOR group as a reference, every 1g increase in the intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decreased the odds of belonging to the MetS group in Model 1 adjusted for age by 3% (MUFA, OR = 0.97, 95% CI:0.946-0.991; PUFA, OR = 0.97, 95% CI:0.942-0.993). Conclusions: These results suggest that to reduce the number of risk factors of metabolic syndrome in menopausal women, nutritional education should emphasize the adequate intake of riboflavin, unsaturated fatty acids, protein, and calcium, and also encourage the recognition and use of nutritional labeling. Results of this study are expected to be utilized as basic data for the health management of menopausal women.

Fabrication of a Partial Genome Microarray of the Methylotrophic Yeast Hansenula polymorpha: Optimization and Evaluation of Transcript Profiling

  • OH , KWAN-SEOK;KWON, OH-SUK;OH, YUN-WI;SOHN, MIN-JEONG;JUNG, SOON-GEE;KIM, YONG-KYUNG;KIM, MIN-GON;RHEE, SANG-KI;GERD GELLISSEN,;KANG, HYUN-AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1239-1248
    • /
    • 2004
  • The methylotrophic yeast Hansenula polymorpha has been extensively studied as a model organism for methanol metabolism and peroxisome biogenesis. Recently, this yeast has also attracted attention as a promising host organism for recombinant protein production. Here, we describe the fabrication and evaluation of a DNA chip spotted with 382 open reading frames (ORFs) of H. polymorpha. Each ORF was PCR-amplified using gene-specific primer sets, of which the forward primers had 5'-aminolink. The PCR products were printed in duplicate onto the aldehyde-coated slide glasses to link only the coding strands to the surface of the slide via covalent coupling between amine and aldehyde groups. With the partial genome DNA chip, we compared efficiency of direct and indirect cDNA target labeling methods, and found that the indirect method, using fluorescent-labeled dendrimers, generated a higher hybridization signal-to-noise ratio than the direct method, using cDNA targets labeled by incorporation of fluorescence-labeled nucIeotides during reverse transcription. In addition, to assess the quality of this DNA chip, we analyzed the expression profiles of H. polymorpha cells grown on different carbon sources, such as glucose and methanol, and also those of cells treated with the superoxide­generating drug, menadione. The profiles obtained showed a high-level induction of a set of ORFs involved in methanol metabolism and oxidative stress response in the presence of methanol and menadione, respectively. The results demonstrate the sensitivity and reliability of our arrays to analyze global gene expression changes of H. polymorpha under defined environmental conditions.

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.

Association between Awareness of Nutrition Labels and Menstrual Cycle Irregularity in Korean Women: The Fifth Korea National Health and Nutrition Examination Survey (2010~2012)

  • Yoo, Hae Young;Ryu, Eunjung;Kim, Ji-Su;Han, Kyung-do
    • Journal of Korean Academy of Nursing
    • /
    • v.47 no.1
    • /
    • pp.133-141
    • /
    • 2017
  • Purpose: The aim of this study was to identify the relationship between awareness of nutrition labeling and menstrual cycle irregularity in women from a nationally representative sample of the Korean population. Methods: A cross-sectional analysis was performed using hierarchical multi-variable logistic regression analysis models. A total of 4,324 women aged 19~54 years from the 2010~2012 Korean National Health and Nutrition Examination Survey participated in the study. The participants were classified into three groups based on self-report responses to a questionnaire about their awareness of nutrition labels: Reading, Not-Reading, and Not-Knowing Groups. Results: The Reading, Not-Reading, and Not-Knowing Groups comprised 46.4%, 44.9%, and 8.7% of the participants, respectively, and 53.6% of the participants had never used nutrition labels. In the Not-Knowing Group, irregular menstrual cycles for more than 3 months were significantly more common than women with irregular menstrual cycles for up to 3 months and women with regular menstrual cycles. Women in the Not-Knowing Group were more likely to exhibit menstrual cycle irregularity (adjusted odds ratio: 1.63, 95% confidence interval: 1.10~2.41) compared to women in the Reading Group after adjusting for age, body mass index, smoking status, alcohol intake, exercise regularity, stress, depression, suicidal ideation, metabolic syndrome, age at menarche, parity, and use of oral contraceptives. Conclusion: No awareness of nutrition labeling appears to be associated with a higher prevalence of menstrual cycle irregularity in a nationally representative group of Korean women.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Effects of Crude Ginseng Saponin on the Thromboxane Synthesis in Lipopolysaccharide-stimulated Macrophages

  • Ryu, Jae-Ha;Lee, Soo-Hwan;Moon, Chang-Hyun;Han, Yong-Nam;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.301-303
    • /
    • 1995
  • Crude ginseng saponin fraction reduced the production of thromboxane $A_2$in the lipopolysaccharide-stimulated macrophages. Several kinds of crude saponins showed variant potency that might be caused by the compositional difference of ginseng saponins. From the metabolic labeling experimental data, this reduction of thromboxane $A_2$formation, at least in part, resulted from the reduction of protein synthesis of inducible isozyme of cyclooxygenase(COX-2). This activity may be resulted from the fact that ginseng saponins have steroidal moiety in their structures.

  • PDF