• Title/Summary/Keyword: metabolic inhibitors

Search Result 90, Processing Time 0.024 seconds

Analysis of the Low Affinity System of the Uptake of Fructose in Suspension Culture Cells (조직 배양에서의 과당의 능동 수송에 대한 Low Affinity System의 분석)

  • 조봉희
    • Journal of Plant Biology
    • /
    • v.30 no.4
    • /
    • pp.277-285
    • /
    • 1987
  • Undifferentiated suspension cells had the ability to transfer glucose and fructose actively, but the suspension culture cells were unable to transfer saccharide without previously splitting to monosccarides. The uptake of fructose showed the low- and high-affinity system compared to of glucose, which possessed only one saturable uptake system. In this paper, the low affinity system of the uptake of fructose has been studied intensively. Glucose did not inhibit the low affinity system of fructose competitively. The Km value was 47 mM for fructose, 7.4 mM for glucose and Vmax was 69 $\mu$mol/h.g fresh weight for fuctose, 9.8 $\mu$ mol/h.g fresh weight for glucose. Metabolizer inhibitors, both 50 $\mu$M of CCCP and DNP, inhibited 70% of the uptake of the low affinity system of fructose. The proton ions were accompanied by the uptake of fructose. The stoichiometry showed ratio of proton to fructose was 0.17. The mechanism ofthe uptake was fructose-proton-symport. The molecules of fructose accmululated inside 25 times more than outside. Therefore, the low affinity system of fructose was not mere diffusion, but depended on metabolic energy and thus transported actively. The importance of this system was discussed.

  • PDF

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

A Case Report of Severe Hypocalcemia and Hypothyroidism after Tyrosine Kinase Inhibitor Treatment (티로신키나아제 억제제 치료 후 발생한 중증 저칼슘혈증 및 갑상선기능저하증 1례)

  • Lee, Eun Kyung;Lee, Young Ki;Hwangbo, Yul;Lee, You Jin
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.88-91
    • /
    • 2018
  • After introducing tyrosine kinase inhibitors (TKIs) as promising treatments for radioactive iodine refractory advanced thyroid cancer patients, we more often meet patients with TKI-related hormone and electrolyte imbalances in clinics. Hypocalcemia associated with TKI is associated with an imbalance in calcium-vitamin D metabolism. TKI-related hypothyroidism is related to the metabolic rate of thyroid hormones. The two side effects usually occur in the early stages of TKI treatment, and if the imbalance is corrected appropriately, the effects are minor, but in severe cases, the TKI should be discontinued. The authors reported a case of severe hypocalcemia and thyroid dysfunction after TKI treatment. A 56-year-old man suffered from symptomatic hypocalcemia during TKI treatment, which was resolved after he stopped taking the TKI medication. Although calcium and vitamin D replacement have increased, hypocalcemia was recurred and TKI treatments have been permanently stopped due to serious weight loss in grade 3. After the interruption, his calcium levels normalized.

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan;Jena, Lingaraja;Bhuyan, Rajabrata;Mahanandia, Nimai Charan;Patri, Manorama
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

Combination of canagliflozin and puerarin alleviates the lipotoxicity to diabetic kidney in mice

  • Qian Zhu;Qu Zhou;Xiao-li Luo;Xu-jie Zhang;San-yu, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.221-230
    • /
    • 2023
  • Diabetic kidney disease is one of the most serious complications of diabetes. Although diabetic kidney disease can be effectively controlled through strict blood glucose management and corresponding symptomatic treatment, these therapies cannot reduce its incidence in diabetic patients. The sodium-glucose cotransporter 2 (SGLT2) inhibitors and the traditional Chinese herb "Gegen" have been widely used in diabetes-related therapy. However, it remains unclear whether the combined use of these two kinds of medicines contributes to an increased curative effect on diabetic kidney disease. In this study, we examined this issue by evaluating the efficacy of the combination of puerarin, an active ingredient of Gegen, and canagliflozin, an SGLT2 inhibitor for a 12-week intervention using a mouse model of diabetes. The results indicated that the combination of puerarin and canagliflozin was superior to canagliflozin alone in improving the metabolic and renal function parameters of diabetic mice. Our findings suggested that the renoprotective effect of combined puerarin and canagliflozin in diabetic mice was achieved by reducing renal lipid accumulation. This study provides a new strategy for the clinical prevention and treatment of diabetic kidney disease. The puerarin and SGLT2 inhibitor combination therapy at the initial stage of diabetes may effectively delay the occurrence of diabetic kidney injury, and significantly alleviate the burden of renal lipotoxicity.

When Should Familial Hypercholesterolemia Be Suspected?: A Case of Dyslipidemia in Young Patient without Coronary Artery Disease (가족성 고콜레스테롤혈증은 언제 의심해야 할까?: 관상동맥 질환이 없는 젊은 이상지질혈증 환자 증례)

  • In Sun Ryou
    • Archives of Obesity and Metabolism
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 2023
  • Familial hypercholesterolemia (FH) is a genetic disease that is not well known or diagnosed in Korea. This disease is associated with persistently high levels of low-density lipoprotein cholesterol (LDL-C), which increase the risk of coronary artery disease at a young age. Therefore, early diagnosis and treatment are important; however, there are no global consensus diagnostic criteria. In Korea, the Dutch Lipid Clinic Network diagnostic criteria, and the Simon Broome diagnostic criteria were used for diagnosis of FH according to the agreement announced at the Korean Society of Lipid and Atherosclerosis (KSoLA) in 2022. Recently, the absence of coronary artery calcification has been considered a good prognostic factor, even among patients with very high LDL-C levels who are considered to be at high risk for atherosclerotic cardiovascular disease. We describe throughout this paper the diagnosis and treatment of FH in a young male without coronary artery calcification.

Physiological Effects of TOPE, a Photo - independent Diphenylether, on Higher Plants (비광요구형 디페닐에테르계 TOPE 의 생리적 작용에 관한 연구)

  • Kim, J.S.;Cho, K.Y.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.160-170
    • /
    • 1996
  • Several physiological responses were investigated in plants treated with TOPE as a preliminary step to know its action site. Unlike photo-dependent diphenylethers, herbicidal activity of TOPE appeared slowly and its typical symptoms were both burning of leaf blades and abnormal division of meristem in grasses, Similarly, both leakage of cell electrolytes and the curling of cotyledon margin were also shown in cucumber(Cucumis sativus L.). Biosynthesis of chlorophyll in etiolated cucumber cotyledon was not inhibited directly by treatment of TOPE at low light intensity(5.5${\mu}$ mol $m^{-2}s^{-1}$ PAR) and protoporphyrin IX was not also accumulated. The contents of phytoene, phytofluene and ${\beta}$-carotene were abnormaly increased. Photosynthesis was inhibited only at high concentration. Mitochondrial respiration was inhibited at high concentration but rather increased significantly at 10${\mu}$M of TOPE. However, respiration inhibitors did not alleviate the two symptoms of TOPE in cucumber cotyledon. In the same experiments, using inhibitors of protein or nucleic acid biosynthesis, only one of the two symptoms was alleviated by chloramphenicol and cycloheximide. In contrast, both symptoms were alleviated by actinomycin-D and hydroxyurea, suggesting that nucleic acid metabolism might be preferentially related to the mode of action of TOPE. DNA, RNA and protein contents were accumulated in both cucumber cotyledon and rice (Oryza sativa L.) routs treated with TOPE, and the DNA of them was increased at first. Thus, it is conjectured that TOPE increase nucleic acid metabolism directly or indirectly, and then disturb various metabolic pathways causing abnormal physiological and morphological effects followed by final death.

  • PDF

Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation

  • Lee, Seokhyun;Lee, Ra Ham;Kim, Sung-Jo;Lee, Hak-Kyo;Na, Chong-Sam;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1942-1949
    • /
    • 2019
  • Objective: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor ${\kappa}B$ ($NF{\kappa}B$) and activated protein 1 (AP-1) inhibitors. Results: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of $NF{\kappa}B$ or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both $NF{\kappa}B$ and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.

The clinical manifestations, the short- and long-term outcomes of Bartter syndrome (Bartter 증후군의 임상 양상과 장단기 치료 결과)

  • Park, Hye Won;Lee, Joo Hoon;Park, Young Seo
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.12
    • /
    • pp.1231-1240
    • /
    • 2007
  • Purpose : Bartter syndrome is a renal tubular defect in electrolyte transport characterized by hypokalemia, metabolic alkalosis and other clinical signs and symptoms. The aims of this study were to analyze the clinical manifestations and the short- and long-term outcomes of Bartter syndrome. Methods : We retrospectively reviewed clinical history, laboratory finding of blood and urine, renal ultrasonography, and hearing tests of five patients who were diagnosed and managed with Bartter syndrome at Asan Medical Center from April 1992 to May 2007. We also evaluated height and body weight periodically after institution of therapy. Results : All patients had poor oral intake, failure to thrive and polyuria. Three of them had maternal history of polyhydramnios and premature delivery. The mean age at diagnosis was 11.8 months. All children presented with hypokalemia, metabolic alkalosis, hyperreninemia. Their blood pressures were normal. One patient had nephrocalcinosis on renal ultrasonography and all of them had normal result in hearing tests. After treatment with indomethacin or other prostaglandin inhibitors and potassium supplementation,their clinical features improved with catch-up growth and improvement in the development during long-term follow-up. Conclusion : We emphasize that early diagnosis and proper treatment in patient with Bartter syndrome are related to better prognosis.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.