• 제목/요약/키워드: metabolic flux analysis

검색결과 64건 처리시간 0.026초

Free-fatty-acid-regulating effects of fermented red ginseng are mediated by hormones and by the autonomic nervous system

  • Lee, Kwang Jo;Ji, Geun Eog
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.97-105
    • /
    • 2014
  • Background: Understanding what causes changes in the flux of free fatty acids (FFA) is important to elucidate the etiology of metabolic syndrome. The first aim of this study was to test whether or not hormones and the autonomic nervous system influence blood FFA levels. A secondary aim was to test by means of a multiple group path analysis whether the consumption of fermented red ginseng (FRG; Panax ginseng) would influence those causal relationships. Methods: Ninety-three postmenopausal women (age 50e73 yr) were randomly divided into two groups. One group (44 women; age, $58.4{\pm}5.9yr$; body mass index, $3.6{\pm}2.5kg/m^2$) was supplied place capsules and the other group (49 women, age $58.4{\pm}5.5yr$; body mass index, $22.9{\pm}2.4kg/m^2$) was supplied FRG capsules. Both prior to and after the study (2 wk), blood samples were collected from the participants and several blood variables were measured and analyzed. Results: Squared multiple correlations of FFA were 0.699 in the placebo group and 0.707 in the FRG group. The unstandardized estimate of estradiol (E2) for FFA was 0.824 in both groups. Conclusion: The path coefficients of cortisol and the branchial pulse for FFA were significantly different between the FRG group and the placebo group.

Brevibacterium lactofermentum 에서 meso-Diaminopimelate-dehydrogenase Gene (ddh)의 Site-specific Inactivation (Site-speci fic Inactivation o meso-Diaminopimelate-dehydrogenase Gene (ddh) in a Lysine-producing Brevibacterium lactofementum.)

  • 김옥미;박선희;이갑랑
    • 한국미생물·생명공학회지
    • /
    • 제26권5호
    • /
    • pp.387-392
    • /
    • 1998
  • B. lactofermentum의 lysine 생합성에 있어서 DDH경로 및 ddh gene이 지닌 중요성을 조사하기 위하여, site-specific mutagenesis technique를 통하여 B. lactofermentum의 ddh gene을 disruption함으로서 DDH 경로를 차단시켰다. B. lactofermentum ddh mutant는 wild type 및 AEC내성 균주보다 성장이 매우 저조하였으며 lysine 생산량에서도 급격한 저하를 가져왔다. 이와 같이 B. lactofermentum이 DAP 경로만을 가졌을 때 세포의 성장 및 lysine 생산량에 있어서 극적인 저하를 가져왔기 때문에 B. lactofermentum에서의 DDH 경로는 meso-DAP 및 lysine 생합성에 있어 필수적인 경로로 작용한다는 것을 확인하였다. 그러므로 C. glutamicum과 B. lactofermentum과 같은 corynebacteria가 lysine을 많이 생산하는 것은 DDH 경로가 부가적으로 존재하기 때문이며, 이러한 DDH 경로는 metabolic flux가 증가되면 중간 대사물을 lysine으로 변화시키는 중요한 경로로 작용할 것이라 사료된다.

  • PDF

Altered Expression of Pyrophosphate: Fructose-6-Phosphate 1-Phosphotransferase Affects the Growth of Transgenic Arabidopsis Plants

  • Lim, Hyemin;Cho, Man-Ho;Jeon, Jong-Seong;Bhoo, Seong Hee;Kwon, Yong-Kook;Hahn, Tae-Ryong
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.641-649
    • /
    • 2009
  • Pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the reversible interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate, a key step in the regulation of the metabolic flux toward glycolysis or gluconeogenesis. To examine the role of PFP in plant growth, we have generated transgenic Arabidopsis plants that either overexpress or repress Arabidopsis PFP subunit genes. The overexpressing lines displayed increased PFP activity and slightly faster growth relative to wild type plants, although their photosynthetic activities and the levels of metabolites appeared not to have significantly changed. In contrast, the RNAi lines showed significantly retarded growth in parallel with the reduced PFP activity. Analysis of photosynthetic activity revealed that the growth retardation phenotype of the RNAi lines was accompanied by the reduced rates of $CO_2$ assimilation. Microarray analysis of our transgenic plants further revealed that the altered expression of $AtPFP{\beta}$ affects the expression of several genes involved in diverse physiological processes. Our current data thus suggest that PFP is important in carbohydrate metabolism and other cellular processes.

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo;Zhang, Jian;Xu, Rui;Lv, Xinxin;Wang, Lihua;Sun, Aiyou;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1924-1932
    • /
    • 2016
  • Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.