• Title/Summary/Keyword: metabolic diet

Search Result 655, Processing Time 0.031 seconds

Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats

  • Koo, Jung-Hoon;Kang, Eun-Bum
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.1
    • /
    • pp.28-35
    • /
    • 2019
  • [Purpose] The purpose of this study was to investigate the effects of treadmill exercise on oxidative stress in the hippocampal tissue and mitochondrial dynamic-related proteins in rats fed a long-term high-fat diet (HFD). [Methods] Obesity was induced in experimental animals using high fat feed, and the experimental groups were divided into a normal diet-control (ND-CON; n=12), a high fat diet-control (HFD-CON; n=12) and a high fat diet-treadmill exercise (HFD-TE; n=12) group. The rats were subsequently subjected to treadmill exercise (progressively increasing load intensity) for 8 weeks (5 min at 8 m/min, then 5 min at 11 m/min, and finally 20 min at 14 m/min). We assessed weight, triglyceride (TG) concentration, total cholesterol (TC), area under the curve, homeostatic model assessment of insulin resistance, and AVF/body weight. Western blotting was used to examine expression of proteins related to oxidative stress and mitochondrial dynamics, and immunohistochemistry was performed to examine the immunoreactivity of gp91phox. [Results] Treadmill exercise effectively improved the oxidative stress in the hippocampal tissue, expression of mitochondrial dynamic-related proteins, and activation of NADPH oxidase (gp91phox) and induced weight, blood profile, and abdominal fat loss. [Conclusion] Twenty weeks of high fat diet induced obesity, which was shown to inhibit normal mitochondria fusion and fission functions in hippocampal tissues. However, treadmill exercise was shown to have positive effects on these pathophysiological phenomena. Therefore, treadmill exercise should be considered during prevention and treatment of obesity-induced metabolic diseases.

Dynamic Energy Balance and Obesity Prevention

  • Yoo, Sunmi
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2018
  • Dynamic energy balance can give clinicians important answers for why obesity is so resistant to control. When food intake is reduced for weight control, all components of energy expenditure change, including metabolic rate at rest (resting energy expenditure [REE]), metabolic rate of exercise, and adaptive thermogenesis. This means that a change in energy intake influences energy expenditure in a dynamic way. Mechanisms associated with reduction of total energy expenditure following weight loss are likely to be related to decreased body mass and enhanced metabolic efficiency. Reducing calorie intake results in a decrease in body weight, initially with a marked reduction in fat free mass and a decrease in REE, and this change is maintained for several years in a reduced state. Metabolic adaptation, which is not explained by changes in body composition, lasts for more than several years. These are powerful physiological adaptations that induce weight regain. To avoid a typically observed weight-loss and regain trajectory, realistic weight loss goals should be established and maintained for more than 1 year. Using a mathematical model can help clinicians formulate advice about diet control. It is important to emphasize steady efforts for several years to maintain reduced weight over efforts to lose weight. Because obesity is difficult to reverse, clinicians must prioritize obesity prevention. Obesity prevention strategies should have high feasibility, broad population reach, and relatively low cost, especially for young children who have the smallest energy gaps to change.

Effects of Na Restriction, K Supplement and Diuresis on Aldosterone Metabolic Clearance in the Normal Korean (한국인의 Aldosterone 대사 제거율에 미치는 Na 섭취제한, K 보충투여 및 이뇨의 영향)

  • Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 1977
  • In the previous study of the release, excretion, and plasma concentration of aldosterone in normal Koreans, the author found that urinary aldosterone excretion and aldosterone secretion rate of the Korean who usually take high amount of salt are significantly lower, in compared to Americans, although the plasma concentration is only tended to be low. The control of plasma aldosterone level depends on the secretion rate and the metabolic clearance of the hormone. In this experiments, the metabolic clearance rate of aldosterone was determined in normotensive korean and the effects of adrenal stimulations on the rates were also studied in the same subjects. The metabolic clearance rate of the normal Korean was not significantly different from those of the American, and shown a little increase in response to sodium restriction. These results indicate that the decrease in secretion rate rather than the increase in metabolic clearance Tate is the major factor maintaining lower plasma aldosterone level. After furosemide diuresis, on the contrary, the removal of aldosterone showed significant the decrease despite slight increase of secretion rate. This suggest that the reduction in metabolic clearance rate of the hormone during volume depletion found to be major cause of high plasma concentration. Additional potassium supply produced detectable decrease of metabolic clearance rate, but the changes were smaller than that of secretion rate, which suggested that the higher secretion rate could account for elevated plasma concentration of aldosterone rather than metabolic clearance. Above results also support author's previous evidences that the normal Korean who already adapted to a high sodium diet have ability to produce adequate aldosterone activity without producing detectable changes on the metabolic clearance rate under the condition of sodium restriction with approp riate potassium intake.

  • PDF

Cholesterol-induced inflammation and macrophage accumulation in adipose tissue is reduced by a low carbohydrate diet in guinea pigs

  • Aguilar, David;deOgburn, Ryan C.;Volek, Jeff S.;Fernandez, Maria Luz
    • Nutrition Research and Practice
    • /
    • v.8 no.6
    • /
    • pp.625-631
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The main objective of this study was to evaluate the effects of a high cholesterol (HC) dietary challenge on cholesterol tissue accumulation, inflammation, adipocyte differentiation, and macrophage infiltration in guinea pigs. A second objective was to assess whether macronutrient manipulation would reverse these metabolic alterations. MATERIALS/METHODS: Male Hartley guinea pigs (10/group) were assigned to either low cholesterol (LC) (0.04g/100g) or high cholesterol (HC) (0.25g/100g) diets for six weeks. For the second experiment, 20 guinea pigs were fed the HC diet for six weeks and then assigned to either a low carbohydrate (CHO) diet (L-CHO) (10% energy from CHO) or a high CHO diet (H-CHO) (54% CHO) for an additional six weeks. RESULTS: Higher concentrations of total (P < 0.005) and free (P < 0.05) cholesterol were observed in both adipose tissue and aortas of guinea pigs fed the HC compared to those in the LC group. In addition, higher concentrations of pro-inflammatory cytokines in the adipose tissue (P < 0.005) and lower concentrations of anti-inflammatory interleukin (IL)-10 were observed in the HC group (P < 0.05) compared to the LC group. Of particular interest, adipocytes in the HC group were smaller in size (P < 0.05) and showed increased macrophage infiltration compared to the LC group. When compared to the H-CHO group, lower concentrations of cholesterol in both adipose and aortas as well as lower concentrations of inflammatory cytokines in adipose tissue were observed in the L-CHO group (P < 0.05). In addition, guinea pigs fed the L-CHO exhibited larger adipose cells and lower macrophage infiltration compared to the H-CHO group. CONCLUSIONS: The results of this study strongly suggest that HC induces metabolic dysregulation associated with inflammation in adipose tissue and that L-CHO is more effective than H-CHO in attenuating these detrimental effects.

Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet

  • Shin, Seul-Mee;Kim, Seul-Ah;Oh, Hee-Eun;Kong, Hyun-Seok;Shin, Eun-Ju;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.96-103
    • /
    • 2012
  • Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of $PPAR{\gamma}/LXR{\alpha}$ and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing $PPAR{\gamma}/LXR{\alpha}$ but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

Effect of Total Mixed Ration Particle Size on Rumen pH, Chewing Activity and Performance in Dairy Cows

  • Schroeder, M.M.;Soita, H.W.;Christensen, D.A.;Khorasani, G.R.;Kennelly, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1755-1762
    • /
    • 2003
  • Two experiments were conducted to determine effects of particle size in total mixed ration (TMR) on performance of lactating cows. Three rumen cannulated Holstein cows were used in a $3{\times}3$ Latin square design for the metabolic experiment. The particle size of the diets was determined using the Penn State Particle Size Separator (PSPSS) and weighing the proportion of sample remaining on the top screen (19 mm diameter). The 3 treatments were short, medium or long diets (4.9, 24.2 and 27.8% of sample remaining on the top screen of the PSPSS, respectively). Nine farms in the Edmonton area were surveyed and the farms were placed into groups based on the particle size of the ration fed. The groups were short ${\leq}6%$, medium 7-12% and long ${\geq}13%$ of sample weight remaining on the top screen of the PSPSS. Dry matter intake was greater (p=0.07) for the medium diet than the long diet in the metabolic study and resulted in a higher (p=0.07) efficiency of milk production. On the commercial farms, a significantly (p=0.002) lower milk fat percentage was observed for the long diet compared to the short diet. The results of these studies confirm that forage particle size influences milk composition and milk fat was negatively correlated to TMR particle size.

Very low protein diet plus ketoacid analogs of essential amino acids supplement to retard chronic kidney disease progression

  • Satirapoj, Bancha;Vongwattana, Peerapong;Supasyndh, Ouppatham
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.384-392
    • /
    • 2018
  • Background: A very low protein diet (VLPD) with ketoacid analogs of essential amino acids (KA/EAA) administration can remarkably influence protein synthesis and metabolic disturbances of patients with advanced chronic kidney disease (CKD), and may also slow the decline in renal function. Methods: A retrospective cohort study was carried out to monitor renal progression and metabolic and nutritional status among 140 patients with CKD stage III or IV. One group (n = 70) was on a low protein diet (LPD) with 0.6 g of protein intake, and another group (n = 70) was on a VLPD with 0.3 g of protein and KA/EAA supplementation of 100 mg/kg/day for 12 months. Results: At 12-month follow-up, estimated glomerular filtration rate (GFR) significantly decreased from $41.6{\pm}10.2$ to $36.4{\pm}8.8mL/min/1.73m^2$ (P < 0.001) and urine protein increased from $0.6{\pm}0.5$ to $0.9{\pm}1.1g/day$ (P = 0.017) in the LPD group, but no significant changes in estimated GFR and urine protein were found in the VLPD plus KA/EAA group. A significant mean difference in rate of change in estimated GFR ($-5.2{\pm}3.6mL/min/1.73m^2$ per year; P < 0.001) was observed between the two groups. After Cox regression analysis, treatment with VLPD plus KA/EAA significantly protected against the incidence of declining GFR > 10% annually (adjusted hazard ratio, 0.42; 95% confidence interval, 0.23-0.79; P = 0.006) and significant correlations were found between using VLPD plus KA/EEA and increased GFR. Conclusion: VLPD supplementation with KA/EAA is associated with delayed renal progression while preserving the nutritional status in the patients with CKD. Co-administration of VLPD and KA/EAA may prove an effective alternative to conservative management of CKD.

High Density Lipoprotein from Egg Yolk (EYHDL) Improves Dyslipidemia by Mediating Fatty Acids Metabolism in High Fat Diet-induced Obese Mice

  • Yu, Zhihui;Mao, Changyi;Fu, Xing;Ma, Meihu
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.179-196
    • /
    • 2019
  • We investigated the effect of high density lipoprotein from egg yolk (EYHDL) on serum, hepatic and fecal lipid and fatty acids (FAs) levels and on gene expression involved in FAs metabolism. Male KM mice were fed either normal diet (ND; n=20), high fat diet (HFD; n=20), or high fat diet containing EYHDL (EYHDL; 0.6 mg/g, every day by oral gavage, n=20) for 100 days. At the end of the experiment, the effects of treatments on biochemical parameters, FAs profiles and involved gene expression were analyzed. Our results revealed that EYHDL markedly suppressed the body weight gain, accumulation of abdominal fat tissues, serum concentrations of LDL-cholesterol (LDL-C) and triglycerides, hepatic triglycerides and cholesterol accumulation, while increased serum concentration of HDL-cholesterol (HDL-C). EYHDL intake also increased total cholesterol (TC) excretions compared with HFD group. Moreover, it alleviated the severity of fatty liver and improved glucose and insulin tolerance compared with HFD. More importantly, EYHDL partially normalized FAs profiles in serum, liver and fecaces and neutralized the HFD-induced upregulation of SREBP-1c, Acaca, Fasn, GPAT and Scd1. In conclusion, our findings indicate that EYHDL may have the potential to improve metabolic disturbances that occur in HFD mice and can be considered as an appropriate dietary recommendation for the treatment of metabolic syndrome (MetS).

Nutritional Intervention Through Ketogenic Diet in GLUT1 Deficiency Syndrome

  • Young-Sun Kim;Woojeong Kim;Ji-Hoon Na;Young-Mock Lee
    • Clinical Nutrition Research
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • Glucose transporter type 1 (GLUT1) deficiency syndrome (DS) is a metabolic brain disorder caused by a deficiency resulting from SLC2A1 gene mutation and is characterized by abnormal brain metabolism and associated metabolic encephalopathy. Reduced glucose supply to the brain leads to brain damage, resulting in delayed neurodevelopment in infancy and symptoms such as eye abnormalities, microcephaly, ataxia, and rigidity. Treatment options for GLUT1 DS include ketogenic diet (KD), pharmacotherapy, and rehabilitation therapy. Of these, KD is an essential and the most important treatment method as it promotes brain neurodevelopment by generating ketone bodies to produce energy. This case is a focused study on intensive KD nutritional intervention for an infant diagnosed with GLUT1 DS at Gangnam Severance Hospital from May 2022 to January 2023. During the initial hospitalization, nutritional intervention was performed to address poor intake via the use of concentrated formula and an attempt was made to introduce complementary feeding. After the second hospitalization and diagnosis of GLUT1 DS, positive effects on the infant's growth and development, nutritional status, and seizure control were achieved with minimal side effects by implementing KD nutritional intervention and adjusting the type and dosage of anticonvulsant medications. In conclusion, for patients with GLUT1 DS, it is important to implement a KD with an appropriate ratio of ketogenic to nonketogenic components to supply adequate energy. Furthermore, individualized and intensive nutritional management is necessary to improve growth, development, and nutritional status.

Obesty - Medical Approach and Treatment - (비만증 -내과적 이해 및 치료-)

  • Oh, Yeon-Sahng
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.3 no.2
    • /
    • pp.197-206
    • /
    • 1995
  • Obesity is a major nutritional problem in the developed countries. The prevalence of obesity may range from 10 to 50 per rent or mort of adult population and it may be increasing tendency. Many efforts have been made to understand the pathogenesis of obesity, but except a few metabolic obesities in the most of obese patients, the mechanisms are not understood. The treatment modalities of obesity, ranging from dietary and pubilc health intervention through the pharmacological and surgical therapy, have been developed and tested. In the obese patients mortalities and mobilities are significantly increased than non obese subjects due to hypertension, diabetics, and other problems. There are four possible mechanisms by which energy balance might be altered to enhance metabolic efficiency. futile metabolic pathway, alteration of protein rum over, alteration in sodium-potassium ATPase and alteration in uncoupled oxidation in brown adipose tissue are considered as possible mechanisms. Low calory and very low calory diets are recommended as a dietary program. Several pharmacological agent such as benzphetamine, fenfluramine, mazindol and fluoxetin are currently popular drugs for the treatment of obesity.

  • PDF