Browse > Article
http://dx.doi.org/10.4110/in.2012.12.3.96

Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet  

Shin, Seul-Mee (College of Pharmacy, SahmYook University)
Kim, Seul-Ah (College of Pharmacy, SahmYook University)
Oh, Hee-Eun (College of Pharmacy, SahmYook University)
Kong, Hyun-Seok (College of Pharmacy, SahmYook University)
Shin, Eun-Ju (Univera Inc.)
Do, Seon-Gil (Univera Inc.)
Jo, Tae-Hyung (Univera Inc.)
Park, Young-In (School of Life Sciences and Biotechnology, Korea University)
Lee, Chong-Kil (College of Pharmacy, Chungbuk National University)
Kim, Kyung-Jae (College of Pharmacy, SahmYook University)
Publication Information
IMMUNE NETWORK / v.12, no.3, 2012 , pp. 96-103 More about this Journal
Abstract
Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of $PPAR{\gamma}/LXR{\alpha}$ and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing $PPAR{\gamma}/LXR{\alpha}$ but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.
Keywords
Aloe QDM complex; Type 2 diabetes mellitus; Insulin sensitivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Weiser, M., W. H. Frishman, M. D. Michaelson, and M. A. Abdeen. 1997. The pharmacologic approach to the treatment of obesity. J. Clin. Pharmacol. 37: 453-473.   DOI   ScienceOn
2 Surwit, R. S., C. M. Kuhn, C. Cochrane, J. A. McCubbin, and M. N. Feinglos. 1988. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37: 1163-1167.   DOI   ScienceOn
3 Stunkard, A. J. 1996. Current views on obesity. Am. J. Med. 100: 230-236.   DOI   ScienceOn
4 Nicolai, A., M. Li, D. H. Kim, S. J. Peterson, L. Vanella, V. Positano, A. Gastaldelli, R. Rezzani, L. F. Rodella, G. Drummond, C. Kusmic, A. L'Abbate, A. Kappas, and N. G. Abraham. 2009. Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension 53: 508-515.   DOI   ScienceOn
5 Peterson, S. J., D. H. Kim, M. Li, V. Positano, L. Vanella, L. F. Rodella, F. Piccolomini, N. Puri, A. Gastaldelli, C. Kusmic, A. L'Abbate, and N. G. Abraham. 2009. The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J. Lipid. Res. 50: 1293-1304.   DOI   ScienceOn
6 Porstmann, T., C. R. Santos, B. Griffiths, M. Cully, M. Wu, S. Leevers, J. R. Griffiths, Y. L. Chung, and A. Schulze. 2008. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8: 224-236.   DOI   ScienceOn
7 Wellen, K. E., and G. S. Hotamisligil. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115: 1111-1119.
8 Rajala, M. W., and P. E. Scherer. 2003. Minireview: The adipocyte-- at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 144: 3765- 3773.   DOI   ScienceOn
9 Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Jr. Ferrante. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796-1808.
10 Xu, H., G. T. Barnes, Q. Yang, G. Tan, D. Yang, C. J. Chou, J. Sole, A. Nichols, J. S. Ross, L. A. Tartaglia, and H. Chen. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112: 1821-1830.
11 Hardie, D. G., and D. Carling. 1997. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur. J. Biochem. 246: 259-273.   DOI   ScienceOn
12 Sag, D., D. Carling, R. D. Stout, and J. Suttles. 2008. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181: 8633-8641.   DOI
13 Iglesias, M. A., J. M. Ye, G. Frangioudakis, A. K. Saha, E. Tomas, N. B. Ruderman, G. J. Cooney, and E. W. Kraegen. 2002. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fatfed rats. Diabetes 51: 2886-2894.   DOI   ScienceOn
14 Makinde, A. O., J. Gamble., and G. D. Lopaschuk. 1997. Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ. Res. 80: 482-489.   DOI   ScienceOn
15 Zong, H., J. M. Ren, L. H. Young, M. Pypaert, J. Mu, M. J. Birnbaum, and G. I. Shulman. 2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. U. S. A. 99: 15983-15987.   DOI   ScienceOn
16 Ju, J. S., M. A. Gitcho, C. A. Casmaer, P. B. Patil, D. G. Han, S. A. Spencer, and J. S. Fisher. 2007. Potentiation of insulin-stimulated glucose transport by the AMP-activated protein kinase. Am. J. Physiol. Cell Physiol. 292: C564-572.   DOI
17 Josep, B. R., G. Amir, K. Jennifer, and H. Raquel. 2005. Peroxisome proliferator activated receptors: the nutritionally controlled molecular networks that integrate inflammation, immunity and metabolism. Current Nutrition & Food Science 1: 179-187.   DOI
18 Hardie, D. G. 2007. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47: 185-210.   DOI   ScienceOn
19 Hardie, D. G., D. Carling, and M. Carlson. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67: 821-855.   DOI   ScienceOn
20 Capasso, F., F. Borrelli, R. Capasso, Carlo G. Di, A. Izzo, L. Pinto, N. Mascolo, S. Castaldo, and R. Longo. 1998. Aloe and its therapeutic use. Phytother. Res. 12: S124-127.   DOI   ScienceOn
21 Heggers, J. P., A. Kucukcelebi, C. J. Stabenau, F. Ko, L. D. Broemeling, M. C. Robson, and W.D. Winters. 1995. Wound healing effects of Aloe gel and other topical antibacterial agents on rat skin. Phytother. Res. 9: 455-457.   DOI   ScienceOn
22 Koo, M. W. L. 1994. Aloe vera: Antiulcer and antidiabetic effects. Phytother. Res. 8: 461-464.   DOI   ScienceOn
23 Kong, H., S. Lee, S. Shin, J. Kwon, T. H. Jo, E. Shin, K. S. Shim, Y. I. Park, C. K. Lee, and K. Kim. 2010. Down-regulation of adipogenesis and hyperglycemia in diet-induced obesity mouse model by Aloe QDM. Biomolecules & Therapeuticss 18: 336-342.   DOI   ScienceOn
24 Winters, W.D., R. Benavides, and W. J. Clouse. 1981. Effects of aloe extracts on human normal and tumor cells in vitro. Econ. Bot. 35: 89-95.   DOI   ScienceOn
25 Yongchaiyudha, S., V. Rungpitarangsi, N. Bunyapraphatsara, and O. Chokechaijaroenporn. 1996. Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine. 3: 241-243.   DOI   ScienceOn
26 Bunyapraphatsara, N., S. Yongchaiyudha, V. Rungpitarangsi, and O. Chokechaijaroenporn. 1996. Antidiabetic activity of Aloe vera L. juice: II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine. 3: 245-248.   DOI   ScienceOn
27 Kim, J. O., K. S. Kim, G. D. Lee, and J. H. Kwon. 2009. Antihyperglycemic and antioxidative effects of new herbal formula in streptozotocin-induced diabetic rats. J. Med. Food. 12: 728-735.   DOI   ScienceOn
28 Kim, K., H. Kim, J. Kwon, S. Lee, H. Kong, S. A. Im, Y. H. Lee, Y. R. Lee, S. T. Oh, T. H. Jo, Y. I. Park, C. K. Lee, and K. Kim. 2009. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin- dependent diabetes mellitus. Phytomedicine. 16: 856-863.   DOI   ScienceOn
29 Martin-Fuentes, P., F. Civeira, D. Recalde, A. L. Garcia-Otin, E. Jarauta, I. Marzo, and A. Cenarro. 2007. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J. Immunol. 179: 3242-3248.   DOI
30 Stewart, C. R., L. M. Stuart, K. Wilkinson, J. M. van Gils, J. Deng, A. Halle, K. J. Rayner, L. Boyer, R. Zhong, W. A. Frazier, A. Lacy-Hulbert, J. El Khoury, D. T. Golenbock, and K. J. Moore. 2010. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11: 155-161.   DOI   ScienceOn
31 Sahoo, D., and V. Drover. 2006. The role of scavenger receptors in signaling, inflammation and atherosclerosis. Biochemistry of Atherosclerosis. 1: 70-91.
32 Stuart, L. M., J. Deng, J. M. Silver, K. Takahashi, A. A. Tseng, E. J. Hennessy, R. A. Ezekowitz, and K. J. Moore. 2005. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol. 170: 477-485.   DOI   ScienceOn
33 Peiser, L., and S. Gordon. 2001. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes. Infect. 3:149-159.   DOI   ScienceOn
34 Stewart, C. R., L. M. Stuart, K. Wilkinson, J. M. van Gils, J. Deng, A. Halle, K. J. Rayner, L. Boyer, R. Zhong, W. A. Frazier, A. Lacy-Hulbert, J. El Khoury, D. T. Golenbock, and K. J. Moore. 2010. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11: 155-161.   DOI   ScienceOn
35 Hoebe, K., P. Georgel, S. Rutschmann, X. Du, S. Mudd, K. Crozat, S. L. Sovath, Shamel, T. Hartung, U. Zähringer, and B. Beutler. 2005. CD36 is a sensor of diacylglycerides. Nature. 433: 523-527.   DOI   ScienceOn