• 제목/요약/키워드: metabolic activity

검색결과 1,163건 처리시간 0.03초

노화과정(老化過程)의 흰쥐에서 보비탕(補脾湯)이 비장(脾臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響) (The effect of Bobitang(BBT) water extract on spleen metabolic enzyme system as to aging process in rats)

  • 이동준;오민석;송태원
    • 혜화의학회지
    • /
    • 제8권1호
    • /
    • pp.689-710
    • /
    • 1999
  • Bobitang(BBT) is one of the most important prescription that has been used in oriental medicine(dongyibogam) for recovering spleen condition. The study was done to evaluate effects of BBT water extract on the spleen lipid peroxide content and metabolic enzyme system changes. After pretreatment of BBT I (100mg/kg), BBT II(250mg/kg), BBT III(350mg/kg), BBT IV(500mg/kg) for 1 week, lipid peroxide content and metabolic enzyme system changes of the spleen was measured in 8 months rats. The results were obtained as follows : 1. The content of spleen lipid peroxide was significantly decreased in all experimental groups as compared with control, and best in BBT III IV treated groups. 2. The activity of spleen superoxide generation was significantly decreased in all experimental groups as compared with control, and best in BBT IV III treated groups. 3. The activity of cytochrome P-450 and aminopyrine demethylase wasn't significant change. 4. The activity of aniline hydroxylase was significantly decreased in BBT IV II treated groups, xanthine oxidase was significantly decreased in all experimental groups, aldehyde oxidase was significantly decreased in BBT IV treated group as compared with control. 5. The activity of antioxidant enzymes as superoxide dismutase, catalase, glutathione peroxidase was significantly increased in all experimental groups as compared with control. 6. The activity of glutathion S-transferase was significantly increased in all experimental groups, the concentration of spleen glutathione was significantly increased in BBT IV treated group as compared with control. 7. The activity of ${\gamma}$ -glutamylcystein synthetase was significantly increased in BBT III IV I treated groups as compared with control, the activity of glutathione reductase wasn't significant change. From the above results, BBT is cosidered to have effect of remove peroxide content and free radical that was made during ageing process. It is expected that treatment of BBT can be applied in future clinical study of delaying the ageing process.

  • PDF

Anaerobic Respiration of Superoxide Dismutase-Deficient Saccharomyces cerevisiae under Oxidative Stress

  • Lee, Sun-Mi;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.15-18
    • /
    • 1998
  • The entanol productivity of superoxide dismutase (SOD)-deficient mutants of Saccharo-Myces cerevisiae was examined under the oxidative stress by Paraquat. It was observed that MnSOD-deficient mutant of S. cerevisiae had higher ethanol productivity than wild type or CuZnSOD-deficient yeast both in aerobic and in anaerobic culture condition. Pyruvated dehydrogenase activity decreased by 35% and alcohol dehydrogenase activity increased by 32% were observed in MnSOD-deficient yeast grown aerobically. When generating oxygen radicals by Paraquat, the ehanol productivity was increased by 40% in CuZnSOD-deficient or wild strain, resulting from increased activity of alcohol dehydrogenase and decreased a activity of pyruvate dehydrogenase. However, the addition of ascorbic acid with Paraquat returned the enzyme activities at the level of control. These results imply that SOD-deficiency in yeast strains may cause the metabolic flux to shift into anaerobic ethanol fermentation in order to avoid their oxidative damages by Paraquat.

  • PDF

난소절제와 Genistein 투여가 간 미토콘드리아 기능에 미치는 영향 (Effect of Ovariectomy and Genistein on Hepatic Mitochondrial Function)

  • 이영민;정명호;이연숙;송지현
    • Journal of Nutrition and Health
    • /
    • 제37권9호
    • /
    • pp.786-793
    • /
    • 2004
  • Women with menopause or rats with ovariectomy is associated with increased body weight, body fat and insulin resistance, which are components of metabolic syndrome. Increased prevalence of metabolic syndrome after menopause might be associated with mitochondrial dysfunction, since mitochondrial oxidative and phosphorylation activity is strongly correlated with insulin sensitivity. Although estradiol replacement prevents the metabolic syndrome, harmful effect of estradiol hampers the casual usage to prevent the metabolic syndrome. It has been reported that genistein has a mild estrogenic activity, decreases fat mass in mice and has an antidiabetic role in diabetic rats. Although insulin resistance is closely related to mitochondrial functions, there has not been yet any study in regard to the effect of dietary genistein on mitochondrial function in the insulin resistant female subjects induced by ovariectomy or similar situation. The present study investigated whether the supplementation of genistein in the high fat diet affected the mitochondrial function of high fat fed ovariectomized rats. Female Sprague Dawley rats (8 weeks old) were assigned to the following groups: sham-operated+ high fat diet (S, n=6); sham-operated + high fat diet with 0.1% genistein (S + G, n=7); ovariectomized + high fat diet (OVX, n=8); ovariectomized + high fat diet with 0.1% genistein (OVX+ G, n=8). Ovariectomy significantly increased body weight compared with S group. Genistein consumption in ovariectomized (OVX + G) rats decreased body weight gain compared with OVX rats. Liver weights were increased by ovariectomy. The hepatic mitochondrial protein density expressed as mg per g liver was lower in the OVX group than in the S group. However, OVX + G group showed the increased mitochondrial protein density similar to the level of S group. When mRNA levels of genes related to mitochondria such as peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1 (PGC-1) and cytochrome c oxidase subunit III (COX III) were measured, there were decreases in the mRNA levels of PGC-1 and COX III in S + G, OVX and OVX + G group. The activity of cytochrome c oxidase was not different between groups. We could observe the decrease in succinate dehydrogenase (SDH) activity per g liver in OVX rats. Genistein supplement increased SDH activity. In conclusion, genistein supplementation to the OVX rats enhanced mitochondrial function by increasing mitochondrial protein density and SDH activity. The improvement in mitochondrial function by genistein can contribute to the improvement in metabolic syndrome.

이염화메탄에 의한 Carboxyhemogolbin 생성에 몇몇 대사활성조절제들이 미치는 영향 (Alterations in Dichloromethane-Induced Carboxyhemoglobin Elevation by Several Metabolic Modulators)

  • 강경애;김영철
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.273-277
    • /
    • 1995
  • Several metabolic modulators on the generation of carbon monoxide (CO)from dichloromethane (DCM) was examined in adult female rats. It has been known that DCM is converted to CO by cytochrome P-450 or to carbon dioxide $(CO_2)$ by glutathione-dependent metabolic reaction. In rats treated with DCM (3 mmol/kg, ip) only, the carboxyhemoglobin (COHb) level reached a peak of approximately 10% 2 or 3 hr following the treatment. Disulfiram (300 mg/kg, ip) or allylsulfide (200 mg/kg, po), both known as a selective inhibitior for cytochrome P-450 2E1, blocked the increase in COHb concentratlons almost completely suggesting that the metabolic conversion of DCM to CO is mediated by the activity of this specific type of isozyme. YH439 (125 or 250 mg/kg, po), a potential hepatoprotective agent, decreased the COHb elevation as well indicating that this chemical is a potent inhibitor for 2E1. In rats treated with pyrazine (200 mg/kg, ip) 18 hr prior to DCM the peak COHb concentration was decreased by approximately 3 or 4%. However, pretreatment of rats with pyrazine either 24 or 48 hr before DCM increased the peak COHb concentration significantly compared to the rats treated with DCM only. The results in the present study strongly suggest that the generation of CO from DCM depends on the 2E1 activity and that the pharmacological and/or toxicological action of YH439 or pyrazine in animals or human is associated with its effect on this isozyme.

  • PDF

Metabolic Syndrome and Life Style in China

  • Wu Pei-Ying;Song Xiao-Min;Jin Qi-Lin;Wang Xin-Qiao;Wang Ai-Rong
    • Journal of Community Nutrition
    • /
    • 제6권3호
    • /
    • pp.141-145
    • /
    • 2004
  • The purpose of this study was to explore the relationship between life style and metabolic syndrome. The cross-sectional survey was conducted in Pingliang community in Shanghai in Jan 2003. The data was collected by questionnaire, and the results were analyzed by SPSS. It was found that the prevalence of Metabolic Syndrome (MS) was $13.4\%$ in the community, and the body mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), serum triglyceride (TG), total cholesterol(TC), low density lipoprotein-cholesterol (LDL-C), and fast plasma glucose (FPG) in MS group were higher than that in non-MS group. Logistic regression analysis indicated that BMI and WHR were positively correlated to the prevalence of MS, and physical activity was negatively correlated to the prevalence of MS. People with higher education levels (${\geq}10y$) had lower BMI, SBP, DBP, LDL-C and FPG. The prevalence of MS in the higher education level group was significantly lower than that of the lower education level group. These results suggested that BMI, WHR and physical activity were important factors of MS, and education background played an important role in the occurrence of MS. Therefore, it is very important to build a healthy life style for preventing and controlling the incidence and developing of MS.

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF

Metabolic Activity of Desalted Ground Seawater of Jeju in Rat Muscle and Human Liver Cells

  • Kim, Bo-Youn;Lee, Young-Ki;Park, Deok-Bae
    • Fisheries and Aquatic Sciences
    • /
    • 제15권1호
    • /
    • pp.21-27
    • /
    • 2012
  • Ground seawater in the east area of the volcanic Jeju Island contains abundant minerals. We investigated the metabolic activity of electrodialyzed, desalted ground seawater (EDSW) from Jeju in both cultured cells and animals. The addition of EDSW to the culture medium (up to 20%, v/v) reduced the leakage of lactate dehydrogenase and increased MTT activity in CHO-IR cells. EDSW (10%) promoted insulin-induced glucose consumption in L6 muscle cells as well as the activities of the liver ethanol-metabolizing enzymes, alcohol dehydrogenase and aldehyde dehydrogenase. Moreover, EDSW suppressed palmitate-induced intracellular fat accumulation in human hepatoma $HepG_2$ cells. Activities of AMP-stimulated protein kinase and acetyl CoA carboxylase, enzymes that modulate fat metabolism, were altered by EDSW in $HepG_2$ cells toward the suppression of intracellular lipid accumulation. EDSW also suppressed hepatic fat accumulation induced by a high-fat diet in mice. Taken together, EDSW showed beneficial metabolic effects, including the enhancement of ethanol metabolism and insulin-induced glucose consumption, and the suppression of intrahepatic fat accumulation.

Comparative analysis of yeast cell viability at exponential and stationary growth phases

  • An, Yejin;Jo, Nayoon;Kim, Hyeji;Nam, Dahye;Son, Woorim;Park, Jinkyu
    • 분석과학
    • /
    • 제35권4호
    • /
    • pp.181-188
    • /
    • 2022
  • This paper describes a comparative analysis of yeast cell viability at exponential and stationary growth phases using multiple conventional techniques and statistical tools. Overall, cellular responses to various viability assays were asynchronous. Results of optical density measurement and direct cell counting were asynchronous both at exponential and stationary phases. Proliferative capacity measurement using SP-SDS indicated that cells at the end of the stationary phase were proliferative as much as exponentially growing cells. Metabolic activity assays using two different dyes concluded that the inside of cells at stationary phase is slightly less reducing compared to that of exponentially growing cells, implying that the metabolic activity imperceptibly declined as cells were aged. These results will be helpful to understand the details of yeast cell viability at exponential and stationary growth phases.

Effect of Low Temperature Preservation and Cell Density on Metabolic Function in a Bioartificial Live

  • Park, Yueng-Guen;Takehiko Tosha;Satoshi Fujita;Boru Zhu;Hiroo Iwata;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권1호
    • /
    • pp.41-46
    • /
    • 2003
  • Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4$^{\circ}C$. In an in vitro perfusion culture System, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4$^{\circ}C$. We a1so studied the effect of cell density on the maintenance of BAL liver function In a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatotytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not Successfully prolong BAL function. The viability and function of isolated hepatotytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4$^{\circ}C$ gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.