• Title/Summary/Keyword: message-passing

Search Result 296, Processing Time 0.028 seconds

Research Trends for Improving MPI Collective Communication Performance (MPI 집합통신 성능 향상 연구 동향)

  • H.Y., Ahn;Y.M., Park;S.Y., Kim;W.J., Han
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.6
    • /
    • pp.43-53
    • /
    • 2022
  • Message Passing Interface (MPI) collective communication has been applied to various science and engineering area such as physics, chemistry, biology, and astronomy. The parallel computing performance of the data-intensive workload in the above research fields depends on the collective communication performance. To overcome this limitation, MPI collective communication technology has been extensively researched over the last several decades to improve communication performance. In this paper, we provide a comprehensive survey of the state-of-the-art research performed on the MPI collective communication and examine the trends of recently developed technologies. We also discuss future research directions for providing high performance and scalability to large-scale MPI applications.

Development of a flux emergence simulation using parallel computing

  • Lee, Hwanhee;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2019
  • The solar magnetic field comes from the solar interior and is related to various phenomena on the Sun. To understand this process, many studies have been conducted to produce its evolution using a single flux rope. In this study, we are interested in the emergence of two flux ropes and their evolution, which takes longer than the emergence of a single flux rope. To construct it, we develop a flux emergence simulation by applying a parallel computing to reduce a computation time in a wider domain. The original simulation code had been written in Fortran 77. We modify it to a version of Fortran 90 with Message Passing Interface (MPI). The results of the original and new simulation are compared on the NEC SX-Aurora TSUBASA which is a vector engine processor. The parallelized version is faster than running on a single core and it shows a possibility to handle large amounts of calculation. Based on this model, we can construct a complex flux emergence system, such as an evolution of two magnetic flux ropes.

  • PDF

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster (대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식)

  • Han, Soohee;Song, Jeong Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.445-452
    • /
    • 2019
  • In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.

Prestack Depth Migration for Gas Hydrate Seismic Data of the East Sea (동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정)

  • Jang, Seong-Hyung;Suh, Sang-Yong;Go, Gin-Seok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.711-717
    • /
    • 2006
  • In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

The Parallelization Effectiveness Analysis of K-DRUM Model (분포형 강우유출모형(K-DRUM)의 병렬화 효과 분석)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.21-30
    • /
    • 2010
  • In this paper, the parallel distributed rainfall runoff model(K-DRUM) using MPI(Message Passing Interface) technique was developed to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The K-DRUM model which is based on GIS can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. The comparison studies were performed with various domain divisions in Namgang Dam watershed in case of typoon 'Ewiniar' at 2006. The numerical simulation using the cluster system was performed to check a parallelization effectiveness increasing the domain divisions from 1 to 25. As a result, the computer memory size reduced and the calculation time was decreased with increase of divided domains. And also, the tool was suggested in order to decreasing the discharge error on each domain connections. The result shows that the calculation and communication times in each domain have to repeats three times at each time steps in order to minimization of discharge error.

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

Parallel Flood Inundation Analysis using MPI Technique (MPI 기법을 이용한 병렬 홍수침수해석)

  • Park, Jae Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1051-1060
    • /
    • 2014
  • This study is attempted to realize an improved computation performance by combining the MPI (Message Passing Interface) Technique, a standard model of the parallel programming in the distributed memory environment, with the DHM(Diffusion Hydrodynamic Model), a inundation analysis model. With parallelizing inundation model, it compared with the existing calculation method about the results of applications to complicate and required long computing time problems. In addition, it attempted to prove the capability to estimate inundation extent, depth and speed-up computing time due to the flooding in protected lowlands and to validate the applicability of the parallel model to the actual flooding analysis by simulating based on various inundation scenarios. To verify the model developed in this study, it was applied to a hypothetical two-dimensional protected land and a real flooding case, and then actually verified the applicability of this model. As a result of this application, this model shows that the improvement effectiveness of calculation time is better up to the maximum of about 41% to 48% in using multi cores than a single core based on the same accuracy. The flood analysis model using the parallel technique in this study can be used for calculating flooding water depth, flooding areas, propagation speed of flooding waves, etc. with a shorter runtime with applying multi cores, and is expected to be actually used for promptly predicting real time flood forecasting and for drawing flood risk maps etc.

Application of MPI Technique for Distributed Rainfall-Runoff Model (분포형 강우유출모형 병렬화 처리기법 적용)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.747-755
    • /
    • 2010
  • Distributed Models have relative weak points due to the amount of computer memory and calculation time required for calculating water flow using a numerical analysis based on kinematic wave theory when compared to the conceptual models used so far. Typically, the distributed models have been mainly applied to small basins. It was necessary to decrease the resolution of the grid to make it applicable for large scale watersheds, and because it would take up too much time to calculate using a higher resolution. That has been one of the more difficult factors in applying the model for actual work. In this paper, MPI (Message Passing Interface) technique was applied to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The comparison studies were performed a single domain and a divided small domain in Yongdam Dam watershed in case of typoon 'Ewiniar' at 2006. They were compared to analyze the application effects of parallelization technique. As a result, a maximum of 10 times the amount of calculation time was saved but keeping the level of quality for discharge by using parallelization code rather than a single processor.

Improvement of WEP Key transmission between APs, during STA Movement in Wireless Environment (무선 LAN 환경에서 단말 이동시 전송되는 AP간 WEP 키 전송 개선 방안)

  • Song, Il-Gyu;Hong, Choong-Seon;Lee, Dae-Young
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.219-228
    • /
    • 2004
  • Wireless LAN(wireless Local Area Network) is constructed network environment by radio in indoors or outdoors environment and that to use electric wave or light instead of wire to client such as PC(Personal Computer), notebook, PDA in hub(Hub) in technological side. Now, among IEEE 802.11 WG(Working Group), there is TGf(Task Group F) that develop standard protocol between AP's(Access Point). In this group, proposed IAPP(Inter Access Point Protocol) to secure interoperability between AP producing in different manufacturer, this offers seamless connectivity between STA by sharing Security Context information or Layer 2 forwarding information between AP without passing through re-authentication process when STAs(Station) move by protocol to secure mobility between AP that differ in equal serve network. In this paper, I wish to suggest method that change avenue of communication of message to block information leakage that can occur at security message or WEP Key transmission between above AP, and uses public key to offer wireless area security little more.