• Title/Summary/Keyword: message delay

Search Result 375, Processing Time 0.026 seconds

Performance Analysis of the XMESH Topology for the Massively Parallel Computer Architecture (대규모 병렬컴퓨터를 위한 교차메쉬구조 및 그의 성능해석)

  • 김종진;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.720-729
    • /
    • 1995
  • We proposed a XMESH(crossed-mesh) topology as a suitable interconnection for the massively parallel computer architectures, and presented performance analysis of the proposed interconnection topology. Horizontally, the XMESH has the same links as those of the toroidal mesh(TMESH) or toroid, but vertically, it has diagonal cross links instead of the vertical links. It reveals desirable interconnection characteristics for the massively parallel computers as the number of nodes increases, while retaining the same structural advantages of the TMESH such as the symmetric structure, periodic placement of subsystems, and constant degree, which are highly recommended features for VLSI/WSI implementations. Furthermore, n*k XMESH can be easily expanded without increasing the diameter as long as n.leq.k.leq.n+4. Analytical performance evaluations show that the XMESH has a shorter diameter, a shorter mean internode distance, and a higher message completion rate than the TMESH or the diagonal mesh(DMESH). To confirm these results, an optimal self-routing algorithm for the proposed topology is developed and is used to simulate the average delay, the maximum delay, and the throughput in the presence of contention. In all cases, the XMESH is shown to outperform the TMESH and the DMESH regardless of the communication load conditions or the number of nodes of the networks, and can provide an attractive alternative to those networks in implementing massively parallel computers.

  • PDF

A Self-Authentication and Deniable Efficient Group Key Agreement Protocol for VANET

  • Han, Mu;Hua, Lei;Ma, Shidian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3678-3698
    • /
    • 2017
  • With the rapid development of vehicular ad hoc Network (VANET), it has gained significant popularity and received increasing attentions from both academics and industry communities in aspects of security and efficiency. To address the security and efficiency issues, a self-authentication and deniable efficient group key agreement protocol is proposed in this paper. The scheme establishes a group between road side units (RSUs) and vehicles by using self-authentication without certification authority, and improves certification efficiency by using group key (GK) transmission method. At the same time, to avoid the attacker attacking the legal vehicle by RSUs, we adopt deniable group key agreement method to negotiation session key (sk) and use it to transmit GK between RSUs. In addition, vehicles not only broadcast messages to other vehicles, but also communicate with other members in the same group. Therefore, group communication is necessary in VANET. Finally, the performance analysis shows superiority of our scheme in security problems, meanwhile the verification delay, transmission overheard and message delay get significant improvement than other related schemes.

A Mobile IP Handover Scheme Based on Routing Costs (라우팅 비용을 고려한 Mobile IP 핸드오버 방안)

  • Park, Hee-Dong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2008
  • This paper proposes a new handover scheme to minimize handover delay and signaling costs, using the fact that a new packet forwarding path could be same or similar to the old one in Mobile IPv4. In the proposed scheme a foreign agent estimates the correlation between the new and old routing paths by using routing costs after receiving a registration request message from a mobile node. If the new packet forwarding path could be same or similar to the old one, the mobile node can receive packets from its old foreign agent without registering its new location with its home agent or correspondent node. The performance analysis shows that the proposed scheme can efficiently reduce handover delay and signaling costs.

  • PDF

Optimal Control Of Two-Hop Routing In Dtns With Time-Varying Selfish Behavior

  • Wu, Yahui;Deng, Su;Huang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2202-2217
    • /
    • 2012
  • The transmission opportunities between nodes in Delay Tolerant Network (DTNs) are uncertain, and routing algorithms in DTNs often need nodes serving as relays for others to carry and forward messages. Due to selfishness, nodes may ask the source to pay a certain reward, and the reward may be varying with time. Moreover, the reward that the source obtains from the destination may also be varying with time. For example, the sooner the destination gets the message, the more rewards the source may obtain. The goal of this paper is to explore efficient ways for the source to maximize its total reward in such complex applications when it uses the probabilistic two-hop routing policy. We first propose a theoretical framework, which can be used to evaluate the total reward that the source can obtain. Then based on the model, we prove that the optimal forwarding policy confirms to the threshold form by the Pontryagin's Maximum Principle. Simulations based on both synthetic and real motion traces show the accuracy of our theoretical framework. Furthermore, we demonstrate that the performance of the optimal forwarding policy with threshold form is better through extensive numerical results, which conforms to the result obtained by the Maximum Principle.

Design and Analysis of Reliable Multicast Protocol using Meta-Groups (메타 그룹을 이용한 신뢰성 있는 멀티캐스트 프로토콜의 설계 및 분석)

  • 이동춘;김배현;송주석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.104-113
    • /
    • 2000
  • In this paper, we propose a protocol that makes use of a concept of a meta-group based on propagation trees to deal with duplicated members of the same multicast group. It is shown that, if multicast tree is composed ofthese meta-groups, the depth of the tree can be shortened and the ordering of the multicast that communicatesbetween multiple senders and receivers can be easier. In the protocol, we assign a Designated Manager(DM) toeach meta-group and make each DM do the role of the representative receiver of the meta group. In this Paper,the DM's are supposed to handle ACK and retransmission for the members in the same meta group. Hence, theDM's distribute the ACK from senders, and they can reduce the burden of senders by shortening commit delaytime. We also show, through a simulation analysis, that the new multicast protocol outperforms the existing onesnot only in message costs but also in commit delay times.

  • PDF

ARARO: Aggregate Router-Assisted Route Optimization for Mobile Network Support

  • Rho, Kyung-Taeg;Jung, Soo-Mok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.9-17
    • /
    • 2007
  • Network Mobility basic support protocol (NEMO Basic) extends the operation of Mobile IPv6 to provide uninterrupted Internet connectivity to the communicating nodes of mobile networks. The protocol uses a mobile router (MR) in the mobile network to perform prefix scope binding updates with its home agent (HA) to establish a bi-directional tunnel between the HA and MR. This solution reduces location-update signaling by making network movements transparent to the mobile nodes (MNs) behind the MR. However, delays in data delivery and higher overheads are likely to occur because of sub-optimal routing and multiple encapsulation of data packets. To manage the mobility of the mobile network, it is important to minimize packet overhead, to optimize routing, and to reduce the volume of handoff signals over the nested mobile network. This paper proposes en aggregate router-assisted route optimization (ARARO) scheme for nested mobile networks support which introduces a local anchor router in order to localize handoff and to optimize routing. With ARARO, a mobile network node (MNN) behind a MR performs route optimization with a correspondent node (CN) as the MR sends a binding update message (BU) to aggregate router (AGR) via root-MR on behalf of all active MNNs when the mobile network moves. This paper describes the new architecture and mechanisms and provides simulation results which indicate that our proposal reduces transmission delay, handoff latency and signaling overhead. To evaluate the scheme, we present the results of simulation.

  • PDF

A Virtual Address Mapping Method for Interconnection between Terrestrial Communication Network and Underwater Acoustic Communication Network (지상 통신 네트워크와 수중음파 통신 네트워크의 상호연결을 위한 가상 주소 매핑 방법)

  • Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.27-45
    • /
    • 2018
  • The terrestrial communication network and the underwater acoustic communication network have very different communication characteristics each other in operational environments, communication media, propagation delay, frequency bandwidth, transmission speed, bit error rate, and so on. These different characteristics cause some different address schemes and different maximum transmission units and, as a result, these differences must form certainly obstacles to the intercommunication between a terrestrial communication network and an underwater acoustic communication network. In this paper, we presents a method to use the virtual addresses to resolve the interconnection problem caused by different address schemes between a terrestrial communication network and an underwater acoustic communication network, and, through a mathematical modeling, we analyze the performance on the message transceiving delay time in the underwater environment.

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

Virtual Slot Multiple Access for Wireless Personal Area Network (WPAN을 위한 가상 슬롯 기반 다중 접근 방식)

  • Hwang Do-Youn;Kwon Eui-Hyeok;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.837-843
    • /
    • 2006
  • IEEE802.15.3 and IEEE802.15.4 have defined the hybrid MAC protocols based on TDMA and CSMA where a multi-frame TDMA structure is employed so that multiple data frames can be transmitted within one timeslot to guarantee minimum delay bounds of isochroous traffic. However, TDMA has an intrinsic problem that cannot dynamically allocate optimal length of timeslot to each station. Therefore the idle timeslot can be produced by stations when each transmission queue is instantaneously empty during its timeslot, which would waste lots of timeslots especially in the multi-frame TDMA systems. In this paper, we propose a more flexible multiple-access scheme for the multi-frame TDMA system based on the concept of virtual slot which is accessible by every station with the highest priority for slot owner and lower priority for other stations. Finally, our simulation results from various environments show that proposed scheme can achieve magnitude improvement of total system throughput and average message delay by maximizing channel utilization.

Time Synchronization with Oceanic Movement Pattern in Underwater Wireless Networks (해수운동의 특성을 활용한 수중 무선 네트워크 시각 동기화)

  • Kim, Sungryul;Park, Seongjin;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.486-496
    • /
    • 2013
  • Time synchronization in underwater environment is challenging due to high propagation delay and mobility of sensor nodes. Previous researches do not consider practical issues affecting on the accuracy of time synchronization such as high-channel access delay and relative position between sensor nodes. Also, those protocols using bidirectional message exchange shorten the network lifetime and decrease the network throughput because numerous transmission, reception and unnecessary overhearing can be occurred. Therefore, in our research, we suggest enhanced time synchronization based on features of underwater environment. It controls the instant of transmission by exploiting the feature of an oceanic movement and node deployment. Moreover, the protocol uses more accurate time information by removing channel access delay from the timestamp. The proposed scheme is also practical on the underwater sensor network requiring low-power consumption because the scheme conducts time-synchronization with smaller transmission and reception compared with previous works. Finally, simulation results show that the proposed protocol deceases time error by 2.5ms and 0.56ms compared with TSHL and MU-Sync respectively, reducing energy consumption by 68.4%.