• 제목/요약/키워드: mesoscale

검색결과 292건 처리시간 0.027초

콘크리트 재료손상에 대한 유한요소상의 의미 (Numerical Implication of Concrete Material Damage at the Finite Element Levels)

  • 이인규;노영숙;김우
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.37-46
    • /
    • 2006
  • 재료구성관계의 범위에서의 강성 성능저하의 스펙트럼 특성을 기본 유한요소법을 이용하여 개별 유한요소와 그의 조합행렬에 대한 스펙트럼 분석을 상호 비교하여 수치적인 의미를 확인하고자 한다. 본 논문의 주 관심부분은 탄성 강성특성의 저하로 인한 콘크리트 재료의 손상정도를 다양한 스펙트럼 특성인 최소고유치의 변화, 유효계수의 변화 등의 시나리오를 가지고 해의 유일성 여부, 특이성의 표현 여부 그리고 변분유계와의 근접여부 등을 관찰하였다. 1차원 및 2차원 예제가 제시되었으며 강성이 서로 다른 혼입재를 가진 2상복합체의 형식으로 콘크리트의 골재, 매트릭스를 표현하고 상호연관성 및 기하학적 영향을 고려하였다. 더불어 2차원 탄성계면요소를 이용하여 골재와 매트릭스 사이에 존재하는 약한 고리인 계면을 묘사하고 이들 계면의 탄성계수의 성능저하로 인한 전체 구조계의 영향 등을 분석, 비교하였다.

한반도 풍력 자원 지도의 공간 해상도가 풍력자원 예측 정확도에 미치는 영향에 관한 수치연구 (Numerical Study on the Impact of the Spatial Resolution of Wind Map in the Korean Peninsula on the Accuracy of Wind Energy Resources Estimation)

  • 이순환;이화운;김동혁;김민정;김현구
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.885-897
    • /
    • 2009
  • In order to make sure the impact of spatial resolution of wind energy map on the estimation of wind power density in the Korean Peninsula, the comparison studies on the characteristics of wind energy map with three different spatial resolutions were carried out. Numerical model used in the establishment of wind map is MM5 (5th generation Mesoscale Model) with RBAPS (Regional Data Assimilation and Prediction System) as initial and boundary data. Analyzed Period are four months (March, August, October, and December), which are representative of four seasons. Since high spatial resolution of wind map make the undulation of topography be clear, wind pattern in high resolution wind map is correspond well with topography pattern and maximum value of wind speed is also increase. Indication of island and mountains in wind energy map depends on the its spatial resolution, so wind patterns in Heuksan island and Jiri mountains are clearly different in high and low resolutions. And area averaged power density can be changed by estimation method of wind speed for unit area in the numerical model and by treatment of air density. Therefore the studiable resolution for the topography should be evaluated and set before the estimation of wind resources in the Korean Peninsula.

엘니뇨/라니냐 강도 변화에 따른 국지적 풍력자원의 변동 (Analytic Study on the Variation of Regional Wind Resources Associated with the Change of El Niño/La Niña Intensity)

  • 이순환;이화운;김동혁;김민정;김현구
    • 한국지구과학회지
    • /
    • 제32권2호
    • /
    • pp.180-189
    • /
    • 2011
  • 엘니뇨/라니냐의 강도 변화에 따른 한반도의 풍력자원 변동성을 확인하기 위하여 20년간 장기 지상관측자료를 바탕으로 해석적인 분석을 실시하였다. 장기적으로 유라시아 대륙의 풍속 약화경향에도 불구하고 한반도는 최근 10년간 풍속 증가가 약하게 나타났다. 그리고 엘니뇨와 라니냐에 따른 한반도 풍속은 계절적으로 다양한 형태를 나타낸다. 지역적으로 음의 해수면 온도 아노말리를 나타내는 라니냐가 발생하면 한반도내 지상풍속이 빨라지는 경향을 가진다. 그리고 기후변화에 대한 풍속은 중규모의 강제력이 가장 미약한 산악지역에서 가장 민감하게 나타난다.

최신토지피복자료를 이용한 대구시의 열환경 수치모의 (Application of the Latest Land Use Data for Numerical Simulation of Urban Thermal Environment in the Daegu)

  • 이현주;이귀옥;원경미;이화운
    • 한국대기환경학회지
    • /
    • 제25권3호
    • /
    • pp.196-210
    • /
    • 2009
  • The land surface precesses is very important to predict urban meteorological conditions. Thus, the latest land use data set to reflect the rapid progress in urbanization was applied to simulate urban thermal environment in Daegu. Because use of the U.S geological Survey (USGS) 25-category data, currently in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), does not accurately described the heterogeneity of urban surface, we replaced the land use data in USGS with the latest land-use data of the Korea Ministry of Environment over Daegu. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 5 classes to account for heterogeneity of urban land cover. The new land cover classification (MC-LULC) improved the capability of MM5 to simulate the daytime part of the diurnal temperature cycle in the urban area. The 'MC-LULC' simulation produced the observed temperature field reasonably well, including spatial characteristics. The warm cores in western Daegu is characterized by an industrial area.

유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구 (A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics)

  • 이태진;이순환;이화운
    • 한국환경과학회지
    • /
    • 제25권7호
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

복잡지형에서의 배출량 시나리오에 따른 대기질 수치모의 (The Air Quality Modeling According to the Emission Scenarios on Complex Area)

  • 이화운;최현정;이순환;임헌호;이강열;성경희;정우식;박정임;문난경
    • 한국환경과학회지
    • /
    • 제16권8호
    • /
    • pp.921-928
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the scenarios of emission on complex terrain. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models - 3/CMAQ), respectively. The emission source was driven from the Clean Air Policy Support System of the Korea National institute of Environmental Research (CAPSS), which is a 1 km x 1 km grid in South Korea during 2003. In comparison of air quality fields, the simulated averaged $PM_{10},\;NO_2,\;and\;O_3$ concentration on complex terrain in control case were decreased as compared with base case. Particularly $PM_{10}$ revealed most substantial localized differences by $(18{\sim}24{\mu}g/m^3)$. The reduction rate of $PM_{10},\;NO_2,\;and\;O_3$ is respectively 18.88, 13.34 and 4.17%.

CFD-WRF 접합 모델을 이용한 도시 지역 화재 시나리오별 확산 특성 연구 (Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model)

  • 최희욱;김도용;김재진;김기영;우정헌
    • 대기
    • /
    • 제22권1호
    • /
    • pp.47-55
    • /
    • 2012
  • The characteristics of flow and pollutant dispersion for fire scenarios in an urban area are numerically investigated. A computational fluid dynamics (CFD) model coupled to a mesoscale weather research and forecasting (WRF) model is used in this study. In order to more accurately represent the effect of topography and buildings, the geographic information system (GIS) data is used as an input data of the CFD model. Considering prevailing wind, firing time, and firing points, four fire scenarios are setup in April 2008 when fire events occurred most frequently in recent five years. It is shown that the building configuration mainly determines wind speed and direction in the urban area. The pollutant dispersion patterns are different for each fire scenario, because of the influence of the detailed flow. The pollutant concentration is high in the horse-shoe vortex and recirculation zones (caused by buildings) close to the fire point. It thus means that the potential damage areas are different for each fire scenario due to the different flow and dispersion patterns. These results suggest that the accurate understanding of the urban flow is important to assess the effect of the pollutant dispersion caused by fire in an urban area. The present study also demonstrates that CFD model can be useful for the assessment of urban environment.

KEOP-2004 집중관측 자료에 대한 강수예측의 민감도 분석 (Sensitivity Analysis of Simulated Precipitation System to the KEOP-2004 Intensive Observation Data)

  • 박영연;박창근;최영진;조천호
    • 대기
    • /
    • 제17권4호
    • /
    • pp.435-453
    • /
    • 2007
  • KEOP (Korea Enhanced Observing Period)-2004 intensive summer observation was carried out from 20 June to 5 July 2004 over the Southwestern part of the Korean peninsula. In this study, the effects of KEOP-2004 intensive observation data on the simulation of precipitation system are investigated using KLAPS (Korea Local Analysis and Prediction System) and PSU/NCAR MM5. Three precipitation cases during the intensive observation are selected for detailed analysis. In addition to the control experiments using the traditional data for its initial and boundary conditions, two sensitivity experiments using KEOP data with and without Jindo radar are performed. Although it is hard to find a clear and consistent improvement in the verification score (threat score), it is found that the KEOP data play a role in improving the position and intensity of the simulated precipitation system. The experiments started at 00 and 12 UTC show more positive effect than those of 06 and 18 UTC. The effect of Jindo radar is dependent on the case. It plays a significant role in the heavy rain cases related to a mesoscale low over Changma front and the landing of a Typhoon. KEOP data produce more strong difference in the 06/18 UTC experiments than in 00/12 UTC, but give more positive effects in 00/12 UTC experiments. One of the possible explanations for this is that : KEOP data could properly correct the atmosphere around them when there are certain amounts of data, while gives excessive effect to the atmospheric field when there are few data. CRA analysis supports this reasoning. According to the CRA (Contiguous Rain Area) analysis, KEOP data in 00/12 UTC experiments improve only the surrounding area, resulting in essentially same precipitation system so the effects remain only in each convective cell rather than the system itself. On the other hand, KEOP data modify the precipitation system itself in 06/18 UTC experiments. Therefore the effects become amplified with time integration.

3차원 변분법을 사용한 이중 도플러 바람장 분석 (Dual Doppler Wind Retrieval Using a Three-dimensional Variational Method)

  • 이선용;최영진;장동언
    • 대기
    • /
    • 제17권1호
    • /
    • pp.69-86
    • /
    • 2007
  • The characteristics of the dual-Doppler wind retrieval method based on a three dimensional variational (3DVAR) conception were investigated from the following four points of view; the sensitivity of the number of iteration, the effect of the weak constraint term, the effect of the smoothness term, and the sensitivity of the error mixing ratio of the radial velocities. In the experiment, the radial velocities relative to the Gosan and Jindo radar sites of the Korea Meteorological Administration (KMA) were calculated from the forecasting of the WRF (Weather Research and Forecast; Skamarock, 2004) model at 1330 UTC 30 June 2006, which is the one and half hour forecast from the initial time, 1200 UTC on that day. The results showed that the retrieval performance of the horizontal wind field was robust, but that of the vertical wind was sensitive to the external conditions, such as iteration number and the on/off of the weak constraint term. The sensitivity of error mixing ratio was so large that even the horizontal wind retrieval efficiency was reduced a lot. But the sensitivity of the smooth term was not so large. When we applied this method to the real mesoscale convective system (MCS) between the Gosan and Jindo radar pair at 1430 UTC 30 June 2006, the wind structure of the convective cells in the MCS was consistently retrieved relative to the reflectivity factor structure. By comparing the vertical wind structure of this case with that of 10 minutes after, 1440 UTC 30 June 2006, we got the physical consistency of our method.

시간 고해상도 라디오존데 관측 자료를 이용한 WRF 모델 행성경계층고도 정확도 평가 (Accuracy Assessment of Planetary Boundary Layer Height for the WRF Model Using Temporal High Resolution Radio-sonde Observations)

  • 강미선;임윤규;조창범;김규랑;박준상;김백조
    • 대기
    • /
    • 제26권4호
    • /
    • pp.673-686
    • /
    • 2016
  • Understanding limitation of simulation for Planetary Boundary Layer (PBL) height in mesoscale meteorological model is important for accurate meteorological variable and diffusion of air pollution. This study examined the accuracy for simulated PBL heights using two different PBL schemes (MYJ, YSU) in Weather Research and Forecasting (WRF) model during the radiosonde observation period. The simulated PBL height were verified using atmospheric sounding data obtained from radiosonde observations that were conducted during 5 months from August to December 2014 over the Gumi weir in Nakdong river. Four Dimensional Data Assimilation (FDDA) using radiosonde observation data were conducted to reduce error of PBL height in WRF model. The assessment result of PBL height showed that RMSE with YSU scheme were lower than that with MYJ scheme in the day and night time, respectively. Especially, the WRF model with YSU scheme produced lower PBL height than with the MYJ scheme during night time. The YSU scheme showed lower RMSE than the MYJ scheme on sunny, cloudy and rainy day, too. The experiment result of FDDA showed that PBL height error were reduced by FDDA and PBL height at the nudging coefficient of $3.0{\times}10^{-1}$ (YSU_FDDA_2) were similar to observation compared to the nudging coefficient of $3.0{\times}10^{-4}$ (YSU_FDDA_1).