• Title/Summary/Keyword: mesh-up

Search Result 340, Processing Time 0.029 seconds

${\beta}-Glucan$ Enrichment from Pearled Barley and Milled Barley Fractions (보리의 도정 및 제분분획을 이용한 ${\beta}-Glucan$의 강화)

  • Lee, Young-Tack;Seog, Ho-Moon;Cho, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.888-894
    • /
    • 1997
  • Two hulled and two hull-less barley varieties were investigated for ${\beta}-glucan$ enrichment. Hull-less barleys contained higher levels of total ${\beta}-glucan$ than hulled barleys, and were thus suitable as starting materials for preparing ${\beta}-glucan-rich$ fractions. Particularly, a waxy type (Suweon-291) of hull-less barley was found to have high soluble dietary fiber content containing primarily ${\beta}-glucan$, compared to the other non-waxy barley varieties. ${\beta}-Glucan$ content of barley during pearling process was measured, and the highest value was observed at the pearling yield of approximately $70{\sim}75%$. The pearled barley grains were ground and sieved to yield ${\beta}-Glucan$ enriched fractions containing up to 22% ${\beta}-glucan$. In the meanwhile, whole barley samples were directly milled by $B{\ddot{u}}hler$ mill to produce bran, shorts, break flour and reduction flour. ${\beta}-Glucan$ contents in the bran and shorts from the milled stream were relatively high, and further concentration of ${\beta}-glucan$ could be accomplished by successive sieving of the bran and shorts fractions. Pearled barley and milled stream could be used to prepare barley fractions with ${\beta}-glucan$ concentrations $2.4{\sim}3.1$ times those of the original barley grain. Water solubility of barley ${\beta}-glucan$ from pearled barley and the milled stream was in the range of $40{\sim}81%$.

  • PDF

Effects of Alloying Elements and Heat-Treatments on Abrasion Wear Behavior of High Alloyed White Cast Iron

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their abrasion wear behavior in as-cast and heat-treated conditions. The specimens were produced using a 15㎏-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides : 3%C-10%Cr-5%Mo-5%W(alloy No. 1: $M_7C_3$ and $M_6C$), 3%C -10%V-5%Mo-5%W(alloy No. 2: MC and $M_2C$) and 3%C-17%Cr-3%V(alloy No. 3: $M_7C_3$ only). A scratching type abrasion test was carried out in the states of as-cast(AS), homogenizing(AH), air-hardening(AHF) and tempering(AHFT). First of all, the as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. 1 ㎏ load was applied in order to contact the specimen with abrading wheel which was wound by 120 mesh SiC paper. The wear loss of the test piece(dimension: $50{\times}50{\times}5$ mm) was measured after one cycle of wear test and this procedure was repeated up to 8 cycles. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the alloy No.2 and highest in the alloy No.1 except for the as-cast and homogenized condition in which the alloy No.3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the alloy No.2 could be attributed to the fact that it contained primary and eutectic MC carbides, and eutectic $M_2C$ carbide with extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and austenite depending upon the type of heat-treatment. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance.

  • PDF

Postharvest Handling and Marketing Management for Making High Salability of Sweetpotatoes (상품성 제고를 위한 고구마 수확 후 관리 및 출하기술)

  • Jeong, Byeong-Choon
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2001.06a
    • /
    • pp.51-64
    • /
    • 2001
  • The qualities including taste of sweetpotato stored during the winter which can display in the spring market in Korea are affected by availability of storage for the roots. In order to make high storage availability of sweetpotato, the postharvest handlings should be done thoroughly from the moment of harvest until shipping them to the market. A lot of procedures that must be handled carefully for improving postharvest management are as follows; digging, trimming, gathering, putting in storage containers, carrying them from field to house, curing, storing, washing, drying, selecting marketable roots, packing and shipping to the market, etc.. Sweetpotatoes have a high moisture content, and a relatively thin and delicate skin, and are sensitive to chilling, so careless postharvest handling can lead to both quantitative and qualitative losses which may be extremely high in some circumstances. From now on research has concentrated on the improvement of postharvest conditions to increase yield and lower disease rates. Storage, which makes sweetpotatoes available through out the year, benefits both the producer and the consumer. Seven very important points must be needed in order to get the best quality marketable roots in the storing of sweetpotatos : $\circled1$The storage house must be clean and sanitary, $\circled2$The crop must be harvested before the first frost to avoid low-temperature injury, $\circled3$Particular care must be taken to avoid cutting, bruising, or other injuries of the sweetpotatoes during digging, picking up, grading, placing in containers, and moving to the storage house, $\circled4$Select sound, disease-free roots for storage $\circled5$Sweetpotatoes should be stored in properly stacked containers $\circled6$Cure immediately after harvest, preferably at 32∼33$^{\circ}C$ and 90 to 95 percent relative humidity for 4 to 7 days, After curing the temperature should be reduced to 13$^{\circ}C$ to 16$^{\circ}C$ by ventilating the storage with outside air. $\circled7$Store at 12$^{\circ}C$ to 14$^{\circ}C$ and a relative humidity of 80 to 85 percent. Storage houses should be located on suitable sites and should be tightly constructed and insulated so that temperature and humidity will be uniform. Sweetpotatoes are usually not washed and graded, and lately sometimes washed, graded, waxed, before being shipped to market. Consumer packaging of sweetpotatoes in paper boxes(10-15kg) or film bags is done mainly to aid marketing. The shelf life of washed roots in consumer packs in only 1 to 2 weeks. Weight loss of roots during marketing is much less in perforated film bags than in mesh and paper bags. Perforation of 0.8 to 1kg polyethylene bags with about six 6mm holes is essential ; to lower the internal relative humidity and avoid excessive sprouting, rooting, and dampness. Development and use of better postharvest handling with good storage facilities or marketing methods can minimize sweetpotate losses and has an effect of indirectly increasing productivity and farmer’s income.

Structural Analysis of the Governing Variables Affecting the Structural Strength Evaluation of the Lashing Bridges in Container Vessels (컨테이너선 라싱 브릿지 구조 강도 평가에 영향을 미치는 주요 변수의 구조해석)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 2023
  • Due to the COVID-19 pandemic and climate change, shortages of essential commodities and resources continue to occur globally. To address this problem, trade volume demand suddenly increased, driving up the freight rate of container ships sharply. The size of container vessels progressively increased from 1,500 TEU (twenty-foot equivalent unit) in the 1960s to 24,400 TEU in 2021. As the improvement of container loading capacity is closely related to the enlargement of the lashing bridge structure, it is necessary to design a structure effective for good container securing and safe under the various external loads that occur during voyage. Major classification societies have recently issued structural-analysis-based guidelines to evaluate the structural safety of lashing bridges, but their acceptance criteria and evaluation methods are different, causing confusion among engineers during design. In this study, the strength change characteristics are summarized by variations in the main variables (modeling range, opening consideration, mesh size) likely to affect the results. Based on this result, the authors propose a reasonable structural-analysis-based evaluation that is expected to serve as a reference in the next revision of classification standards.

Studies on the Extending of Plywood Adhesives used Foliage Powder (낙엽분말(落葉粉末)을 이용(利用)한 합판용(合板用) 접착제(接着劑)의 증량(增量)에 관(關)한 연구(硏究))

  • Kim, Jong-Man;Bark, Jong-Yeol;Lee, Phil-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.83-100
    • /
    • 1979
  • It was planned and performed to study the possibility on the use of inexpensive and easily acquirable foliage powder, which processed by pulverizing after dried, instead of imported expensive wheat flour for the extending of plywood adhesives. Pine leaves of softwood trees, Poplar, Oak and Sycamore leaves of broad leaved species were selected and harvested to pulverize into the minute foliage powder. The harvested foliages from each selected species were pulverized into 40 mesh particles after dried at $100{\sim}105^{\circ}C$ condition during 24 hours in drying oven. To compare the extending effect of plywood adhesives with these foliage powders 100 mesh wheat flour using at current plywood industry was also prepared. Foliage powder and wheat flour were extended into 10, 20, 30, 50 and 100% to the urea and phenol formaldehyde resin. After plywoods were processed by the above extending method shear strength of extended plywoods were analyzed and discussed. The results obtained at this study are as follows: 1) Among 10% extensions of urea formaldehyde resin plywood, dry shear strength of plywood extended by wheat flours was the highest and that of non-extended plywood the next. Plywood extended with foliage powder showed the lowest dry shear strength. The order of dry shear strength of plywoods extended by foliage powder was that of Oak foliage powder extension, the best, that of Sycamore, that of Pine, and that of Poplar. 2) Among 20% extensions of urea formaldehyde resin plywood, plywood extended by wheat flour showed the highest dry shear strength, and the next was plywood by Poplar foliage powder. All these two showed higher dry shear strength than non-extension plywoods. Except Poplar, dry shear strength of foliage powder extension plywoods was bad, but the order of dry shear strength of plywoods extended by foliage powder was Pine, Poplar and Oak. 3) In the case of 30% extensions of urea formaldehyde resin plywood, dry shear strength of wheat flour extension was the highest and non-extension the next. Dry shear strength of foliage powder extension plywoods was poor with a rapid falling-off in strength. 4) Among 50% and 100% extensions of urea formaldehyde resin plywood, only wheat flour showed excellent dry shear strength. In the case of foliage powder extension, low dry shear strength showed at the 50% extension of Pine and Poplar, and plywoods of 50% extension of Oak foliage powder delaminated without measured strength. All plywoods of 100% foliage powder extension delaminated, and then shear strength were not measured. 5) Among wet shear strength of 10% extensions of urea formaldehyde resin plywood, wheat flour extension was the highest as in the case of dry shear strength, and non-extension plywood the next. Except Poplar foliage extension, all foliage powder extension plywoods showed low shear strength. 6) Wet shear strength of plywoods of 20% extension lowered in order of non-extension plywood, plywood of wheat flour extension and plywood of foliage powder extension, but other plywoods of foliage powder extension except plywoods of Poplar and Oak foliage powder extension delaminated. 7) Wet shear strength of 30% or more extension of urea formadehyde resin plywood were weakly measured only at 30% and 50% extension of wheat flour, and wet shear strength of plywoods extended by foliage powder were not measured because of delaminating. 8) Dry shear strength of phenol formaldehyde plywoods extended by 10% wheat flour was the best, and shear strength of plywoods extended by foliage powder were low, but the order was Oak, Poplar, and Pine. Plywood of Sycamore foliage powder extension delaminated. 9) In the case of 20% extensions of phenol formaldehyde resin, dry shear strength of plywood extended by wheat flour was the best, but plywood of Pine foliage powder extension the next, and the next order was Oak and Poplar foliage powder. Plywood of Sycamore foliage powder extension delaminated. 10) Among dry shear strength of 30% extensions of phenol formaldehyde plywood, that of Pine foliage powder extension was on the rise and more excellent than plywood of wheat flour extension, but Poplar and Oak showed the tendency of decreasing than the case of 20% extension. Plywood of Sycamore foliage powder extension delaminated. 11) While dry shear strength of 50% and 100% extension plywoods were excellent in the case of Pine foliage powder and wheat flour extension, that of hardwood such as Poplar, Oak, and Sycamore foliage powder extension were not measured because of delaminating. 12) As a filler the foliage powder extension of urea formaldehyde resin is possible up to 20% with Poplar foliage powder. And also as an extender for phenol formaldehyde resin, Pine foliage powder can be added up to the same amount as that in the case of wheat flour.

  • PDF

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

THE EFFECT OF THE pH OF REMINERALIZED BUFFER SOLUTIONS ON DENTIN REMINERALIZXATION (재광화 완충용액의 pH 변화가 상아질의 재광화에 미치는 영향)

  • Kim, Sung-Chul;Roh, Bung-Duk;Jung, Il-Young;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.151-161
    • /
    • 2007
  • Dental caries is the most common disease in the oral cavity However, the mechanism and treatment of dental caries is not completely understood since many complex factors are involved. Especially the effect of pH on remineralization of early stage of dental caries is still controversial In this study, dental caries in dentin was induced by using lactic acidulated buffering solutions and the loss or inorganic substance was measured. Also decalcified specimens were remineralized by three groups of solution with different pH (group of pH 4.3, 5.0, and 5.5). Then, the amount and the area of inorganic substance precipitation was quantitatively analyzed with microradiograph. Also a qualitative comparison of the normal phase the demineralized phase, and the remineralized phase of hydroxyapatite crystal was made under SEM. The results were as follows, 1. In microradiograghic analysis, as the pH increased, the amount of remineralization in decalcified dentin tended to increase significantly As the pH decreaced, deeper decalcification, however, occurred along with remineralization. The group of pH 5.5 had a tendency to be remineralized without demineralization (p<0.05). 2. In SEM view, the remineralization in dentine caries occurred from the hydroxyapatite crystal surface surrounding the mesh of organic matrix, and eventually filled up the demineralized area. 3. 5 days after remineralization, hydroxyapatite crystal grew bigger with deposition of inorganic substance in pH 4.3 and 5.0 group, and the crystal in the remineralized area appeared to return to normal. After 10 days, the crystals in group of pH 4.3 and 5.0, which grew bigger after 5 days of remineralization, turned back to their normal size, but in group of pH 5.5, some crystals were found to double their size. In according to the results of this experiment, the decalcifying and remineralizing process of dentine is neither simple nor independent, but a dynamic process in which decalcification and remineralization occur simultaneously. The remineralization process occurred from the hydroxyapatite crystal surface.

Sensory Characteristics of Mae-jak-gwa with Persimmon Powder (감가루를 첨가한 매작과의 관능적 특성)

  • 이희해;고봉경
    • Korean journal of food and cookery science
    • /
    • v.18 no.2
    • /
    • pp.216-224
    • /
    • 2002
  • Persimmon powder (PW), which was prepared by pulverizing freeze-dried persimmon with peels, was added to Maejakgwa up to 25% of wheat flour. Maejakgwa samples were prepared by the central composit experimental design for three independent variables: amount of PW, frying time, and frying temperature. The color of Maejakgwa was influenced more by the frying time and temperature than the content of added PW. Crispiness and adhesiveness were highly correlated with overall preference. Although the amount of PW affected the adhesiveness, the adhesiveness could be controlled by the frying temperature and time. Frying temperature was the most effective factor on the crispness and hardness. The addition of high amount of PW obviously increased the sweetness and aftertaste. However, at the low amount of PW, frying for longer time at high temperature also increased the sweetness and aftertaste. Center sample (15% PW, frying for 4 min at 145$\^{C}$) showed the best score at the overall preference. Overall preference was improved as the sample was fried at high temperature/short time or at low temperature/long time. Maejakwa prepared with high amount of PW at 20% showed no significant difference with the center sample for overall preference as prepared by frying for 3 min at 155$\^{C}$. The optimum condition obtained by superimposing color, crispiness and overall preference was frying for 5∼6 min at 131∼140$\^{C}$.

Evaluation of Thermal Catalytic Decomposition of Chlorinated Hydrocarbons and Catalyst-Poison Effect by Sulfur Compound (염소계 탄화수소의 열촉매 분해와 황화합물에 의한 촉매독 영향 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Yang, Chang-Hee;Kim, Mo-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • To overcome certain disadvantages of past typical control techniques for toxic contaminants emitted from various industrial processes, the current study was conducted to establish a thermal catalytic system using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst and to evaluate catalytic thermal destruction of five chlorinated hydrocarbons[chlorobenzene(CHB), chloroform(CHF), perchloroethylene (PCE), 1,1,1-trichloroethane(TCEthane), trichloroethylene(TCE)]. In addition, this study evaluated the catalyst poison effect on the catalytic thermal destruction. Three operating parameters tested for the thermal catalyst system included the inlet concentrations, the incineration temperature, and the residence time in the catalyst system. The thermal decomposition efficiency decreased from the highest value of 100% to the lowest value of almost 0%(CHB) as the input concentration increased, depending upon the type of chlorinated compounds. The destruction efficiencies of the four target compounds, except for TCEthane, increased upto almost 100% as the reaction temperature increased, whereas the destruction efficiency for TCEthane did not significantly vary. For the target compounds except for TCEthane, the catalytic destruction efficiencies increased up to 30% to 97% as the residence time increased from 10 sec to 60 sec, but the increase of destruction efficiency for TCEthane stopped at the residence time of 30 sec, suggesting that long residence times are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Conclusively, the current findings suggest that when applying the transition-metal catalyst for the better destruction of chlorinated hydrocarbons, VOC type should be considered, along with their inlet concentrations, and reaction temperature and residence time in catalytic system. Meanwhile, the addition of high methyl sulfide(1.8 ppm) caused a drop of 0 to 50% in the removal efficiencies of the target compounds, whereas the addition of low methyl sulfide (0.1 ppm), which is lower than the concentrations of sulfur compounds measured in typical industrial emissions, did not cause.