염소계 탄화수소의 열촉매 분해와 황화합물에 의한 촉매독 영향 평가

Evaluation of Thermal Catalytic Decomposition of Chlorinated Hydrocarbons and Catalyst-Poison Effect by Sulfur Compound

  • 조완근 (경북대학교 환경공학과) ;
  • 신승호 (경북대학교 환경공학과) ;
  • 양창희 (경북대학교 환경공학과) ;
  • 김모근 (경상북도 보건환경연구원)
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University) ;
  • Shin, Seung-Ho (Department of Environmental Engineering, Kyungpook National University) ;
  • Yang, Chang-Hee (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Mo-Geun (Gyeongsangbukdo Government Public Institute of Health and Environment)
  • 발행 : 2007.05.31

초록

다양한 산업체에서 배출되는 독성오염물질들을 제어하는 기존의 기술이 안고 있는 일부 단점을 보완하기 위하여 전이금속 지지체로 구성된 스테인레스스틸-백금 촉매를 이용하는 열촉매 시스템을 구축하고 다섯 가지의 염소계 탄화수소[chlorobenzene(CHB), chloroform(CHF), perchloroethylene(PCE), 1,1,1-trichloroethane(TCEthane), trichloroethylene(TCE)]의 열촉매 분해효율을 평가하기 위해서 본 연구가 수행되었다. 또한, 본 연구는 촉매독이 열촉매 분해 효율에 미치는 영향을 평가하였다. 열촉매 시스템의 주요 세 가지 운전인자인 유입농도, 소각 온도 및 촉매시스템내 체류시간이 본 연구에서 고려되었다. 유입농도가 증가함에 따라 염소계탄화수소의 분해효율이 최대 100%에서 오염물질의 종류에 따라 최저 0%(CHB) 가까이로 감소하는 것으로 나타났다. TCEthane을 제외한 네 가지 염소계탄화수소의 분해효율은 온도 증가에 따라 100% 가까게 나타났으나, TCEthane의 분해효율은 온도가 증가해도 거의 변화가 없는 것으로 나타났다. TCEthane을 제외한 조사대상물질에 대하여 촉매시스템내의 체류시간이 10초에서 60초로 증가시 오염물질에 따라 30%에서 97%까지 점진적으로 증가하는 경향을 나타내었지만, TCEthane은 체류시간 30초에서 분해효율이 더 이상 증가하지 않았다. 이러한 결과는 체류시간 길이가 항상 분해효율과 비례하는 것이 아님을 제안한다. 결론적으로, 본 연구 결과는 염소계 탄화수소를 보다 고효율로 제어하기 위해서 전이금속 촉매시스템을 적용할 경우에 유입농도, 반응온도, 그리고 촉매시스템내 체류시간과 더불어 제어하고자하는 오염물질의 종류도 함께 고려되어야 할 것을 제안한다. 한편으로, 황화메틸 1.0 ppm을 첨가함으로서 조사대상오염물질의 분해효율이 $0\sim50%$로 감소하는 결과가 나타났지만, 일반적으로 산업 배기가스에서 측정되는 황화합물의 오염도 수준보다 다소 낮은 농도에 해당하는 황화메틸 0.1 ppm을 오염물질에 첨가하였을 때는 오염물질의 분해효율에 영향이 나타나지 않았다.

To overcome certain disadvantages of past typical control techniques for toxic contaminants emitted from various industrial processes, the current study was conducted to establish a thermal catalytic system using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst and to evaluate catalytic thermal destruction of five chlorinated hydrocarbons[chlorobenzene(CHB), chloroform(CHF), perchloroethylene (PCE), 1,1,1-trichloroethane(TCEthane), trichloroethylene(TCE)]. In addition, this study evaluated the catalyst poison effect on the catalytic thermal destruction. Three operating parameters tested for the thermal catalyst system included the inlet concentrations, the incineration temperature, and the residence time in the catalyst system. The thermal decomposition efficiency decreased from the highest value of 100% to the lowest value of almost 0%(CHB) as the input concentration increased, depending upon the type of chlorinated compounds. The destruction efficiencies of the four target compounds, except for TCEthane, increased upto almost 100% as the reaction temperature increased, whereas the destruction efficiency for TCEthane did not significantly vary. For the target compounds except for TCEthane, the catalytic destruction efficiencies increased up to 30% to 97% as the residence time increased from 10 sec to 60 sec, but the increase of destruction efficiency for TCEthane stopped at the residence time of 30 sec, suggesting that long residence times are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Conclusively, the current findings suggest that when applying the transition-metal catalyst for the better destruction of chlorinated hydrocarbons, VOC type should be considered, along with their inlet concentrations, and reaction temperature and residence time in catalytic system. Meanwhile, the addition of high methyl sulfide(1.8 ppm) caused a drop of 0 to 50% in the removal efficiencies of the target compounds, whereas the addition of low methyl sulfide (0.1 ppm), which is lower than the concentrations of sulfur compounds measured in typical industrial emissions, did not cause.

키워드

참고문헌

  1. Koyert-Golkowska, A., Musialik-Piotrowska, A., and Rutkowski, J. D., 'Oxidation of chlorinated hydrocarbons over Pt-Pd based catalyst. Part I. Chlorinated methanes,' Catal. Today, 90, 133-138(2004) https://doi.org/10.1016/j.cattod.2004.04.018
  2. Musialik-Piotrowska, A., 'Destruction of trichloroethylene (TCE) and trichlorormethane(TCM) in the presence of selected VOCs over Pt-Pd-based catalyst,' Catal. Today, 119, 301-304(2007) https://doi.org/10.1016/j.cattod.2006.08.059
  3. Warneck, P., Chemistry of the Natural Atmosphere. Academic Press, San Diego, pp. 264-345(2000)
  4. Taylor, P. H. and Lenoir, D., 'Chloroaromatic formation in incineration processes,' Sci. Total Environ., 269, 1-24(2001) https://doi.org/10.1016/S0048-9697(00)00829-9
  5. Oberg, T. and Ohrstrom, T., 'Chlorinated aromatics from combustion: influence of chlorine, combustion conditions and catalytic activity,' Environ. Sci. Technol., 37, 3995-4000(2003) https://doi.org/10.1021/es034056f
  6. Oberg, T., 'Halogenated aromatics from steel production: results of a piloy-scale investigation,' Chemosphere, 56, 441-448(2003)
  7. Wang, L. C., Lee, W. J., Tsai, P. J., Lee, W. S., and Chang-Chien, G. P., 'Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants,' Chemosphere, 50, 1123-1129(2003) https://doi.org/10.1016/S0045-6535(02)00702-6
  8. OEHHA(Office of Environmental Health Hazard Assessment), Proposition 65 Status Report Safe Harbor Levels: No Significant Risk Levels for Carcinogens and Maximum Allowable Dose Levels for Chemicals Causing Reproductive Toxicity. California Environmental Protection Agency, OEHHA, Sacramento, CA,(2003). Accessed at http://www.oehha.ca.gov/prop65/pdf/june2003StatusReport.pdf
  9. IARC(International Agency for Research on Cancer), Monographs on the Evaluation of Carconogenic Risks to Humans, vol. 82. IARC, Lyon, France, p. 367(2002)
  10. Duneas, C., Fernandez, C. M., Canete, S., Carretero, J., Liger, E., 'Analyses of ozone in urban and rural sites in Malaga(Spain),' Chemosphere, 56, 631-639(2004) https://doi.org/10.1016/j.chemosphere.2004.04.013
  11. Atkinson, R. and Arey, J., 'Gas phase troposperic chemistry of biogenic volatile organic compounds: a review,' Atmos. Environ., 37(suppl. 2), 197-219(2003) https://doi.org/10.1016/S1352-2310(03)00391-1
  12. Zhang, B. N., and Oanh, M. T. K., 'Photochemical smog pollution in the Bangkok metropolitan Region of Thailand in relation to $O_{3}$ precursor concentration and meteorological conditions,' Atmos. Environ., 36, 4211-4222(2002) https://doi.org/10.1016/S1352-2310(02)00348-5
  13. Chang, Y. C. and Carlisle, C. T., 'Microwave process for volatile organic compound abatement,' J. Air Waste Manage. Assoc., 51, 1628-1641(2001) https://doi.org/10.1080/10473289.2001.10464389
  14. Henschel, D. B., 'Cost analysis of activated carbon versus photocatalytic oxidation for removing organic compounds from indoor air,' J. Air Waste Manage. Assoc., 48, 985-994(1998) https://doi.org/10.1080/10473289.1998.10463744
  15. Fourmentin, S., Outirite, M., Blach, P., Landy, D., Ponchel, A., Monflier, E., and Surpateanu, G., 'Solubilisation of chlorinated solvents by cyclodextrin derivatives: A study by static heads pace gas chromatography and molecular modelling,' J. Hazard. Mater., 141, 92-97 (2007) https://doi.org/10.1016/j.jhazmat.2006.06.090
  16. Dege, P., Pinard, L., Magnoux, P., and Guisnet, M., Catalytic oxidation of volatile organic compounds(VOCs): Oxidation of o-xylene over Pd and Pt/HFAU catalysts, C.R. Acad. Sci. Paris, Serie IIC, Chimie/Chem., 4, 41-47(2001)
  17. O'Malley, A. and Hodnett, B. K., 'The influence of volatile organic compound structure on conditions required for total oxidation,' Catal. Today, 54, 31-38 (1999) https://doi.org/10.1016/S0920-5861(99)00166-2
  18. Wang, W., Zhang, H.B., Lin, G. D., and Xiong, J. T., 'Study of $Ag/La_{0.6}Sr_{0.4}MnO_{3}$ catalysts for complete oxidation of methanol and ethanol at low concentrations,' Appl. Catal. B: Environ., 24, 219-232(2000) https://doi.org/10.1016/S0926-3373(99)00106-X
  19. Centeno, M. A., Paulis, M., Montes, M., and Odriozola, J. A., 'Catalytic combustion of volatile organic compounds on $Au/CeO_{2}/Al_{2}O_{3}$ and $Au/Al_{2}O_{3}$ catalysts,' Appl. Catal. A: General, 234, 65-78(2002) https://doi.org/10.1016/S0926-860X(02)00214-4
  20. Minico, S., Scire, S., Crisafulli, C., Maggiore, R., and Galvagno, S., 'Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts,' Appl. Catal. B: Environ., 28, 245-251(2000) https://doi.org/10.1016/S0926-3373(00)00181-8
  21. Ali, A. H. and Zaera, F., 'Kinetic study on the selective catalytic oxidation of 2-propanol to acetone over nickel foils,' J. Molecular Catal. A: Chem., 177, 215-235(2002) https://doi.org/10.1016/S1381-1169(01)00223-0
  22. Hager, S. and Bauer, R., 'Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide,' Chemosphere, 38, 1549-1559(1999) https://doi.org/10.1016/S0045-6535(98)00375-0
  23. Saad F., Carolyn, T., and Koh, A., 'Catalytic destruction of volatile organic compound emissions by platinum based catalyst,' Chemosphere, 38, 2109-2116(1999) https://doi.org/10.1016/S0045-6535(98)00420-2
  24. Tong, J. and Matsumura, Y., 'Pure hydrogen production by methane steam reforming with hydrogen-permeable membrane reactor,' Catal. Today, 111, 147-152(2006) https://doi.org/10.1016/j.cattod.2005.11.001
  25. Rasmussen, S. B., Kustov, A., Due-Hansen, J., Siret, B., Tabaries, F., and Fehrmann, R., 'Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas,' Appl. Catal. B: Environ., 69, 10-16(2006) https://doi.org/10.1016/j.apcatb.2006.05.009
  26. Vogelaar, B. M., Steiner, P., van der Zijden, T. F., Van Langeveld, A. D., Eijsbouts, S., and Moulijn, J. A., 'Catalyst deactivation during thiophene HDS: The role of structual sulfur,' Appl. Catal. A: Gen., 318, 28-36 (2007) https://doi.org/10.1016/j.apcata.2006.10.032
  27. 김건중, 박성식, 윤조희, '바나듐 함유 제올라이트 상에서 MIBK의 촉매연소,' 한국폐기물학회지, 12, 513-524 (1995)
  28. Ordonez, S., Bello, L., Sastre, H., Rosal, R., and Diez, F. V., 'Kinetics of the deep oxidation of benzene toluene, n-hexane and their binary mixtures over a platinum on r-alumina catalyst,' Appl. Catal. B: Environ., 38, 139-149(2002) https://doi.org/10.1016/S0926-3373(02)00036-X
  29. Baldi, M., Finocchio, E., Milella, F., and Busca, G., 'Catalytic combustion of C3 hydrocarbons and oxygenates over $Mn_{3}O_{4}$,' Appl. Catal. B: Environ., 16, 43-51(1997) https://doi.org/10.1016/S0926-3373(97)00061-1
  30. Dell, R. M. and Stone, F. S., 'The Adsorption of Gases on Nickel Oxides,' Trans. Soc., 50, 501-510(1994)