• 제목/요약/키워드: mesh-free

검색결과 294건 처리시간 0.029초

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • 제37권2호
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

Numerical simulation of wave interacting with a free rolling body

  • Jung, Jae Hwan;Yoon, Hyun Sik;Chun, Ho Hwan;Lee, Inwon;Park, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.333-347
    • /
    • 2013
  • The present study numerically models the interaction between a regular wave and the roll motion of a rectangular floating structure. In order to simulate two-dimensional incompressible viscous two-phase flow in a numerical wave tank with the rectangular floating structure, the present study used the volume of fluid method based on the finite volume method. The sliding mesh technique is adopted to handle the motion of the rectangular floating structure induced by fluid-structure interaction. The effect of the wave period on the flow, roll motion and forces acting on the structure is examined by considering three different wave periods. The time variations of the wave height and the roll motion of the rectangular structure are in good agreement with experimental results for all wave periods. The present response amplitude operator is in good agreement with experimental results with the linear potential theory. The present numerical results effectively represent the entire process of vortex generation and evolution described by the experimental results. The longer wave period showed a different mechanism of the vortex evolution near each bottom corner of the structure compared to cases of shorter wave periods. In addition, the x-directional and z-directional forces acting on the structure are analyzed.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계 (Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD)

  • 조한나;최정은;전호환
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

등기하 해석을 위한 요소망 정제와 후처리 방법 (Mesh Refinement for Isogeometric Analysis and Post-Processing)

  • 김지인;투완 안 루;이재홍;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2012
  • 본 논문은 비정형의 정확한 형상 설계와 구조해석을 위해 넙스 기저함수를 기반으로 한 변수들로 생성된 평연의 등기하 해석법과 해석 결과에 대한 후처리 방법을 제시한다. 제어점, 매듭값, 차수들로 구성되는 변수들을 인터페이스 기법을 통해 변화시킴으로써 다양한 기하 형상을 구축할 수 있다. 등기하 해석에 사용되는 기저함수는 기하형상 구축에 사용되는 함수와 동일하여 형상의 정확한 설계와 해석이 가능하다. 등기하 해석을 위한 요소망 생성을 위해 h-p-k refinement 과정을 수행함으로써 기존 형상의 변형없이 요소망을 생성하여 구조해석을 수행하였다. 해석에 의한 결과값인 제어점의 변위에 대한 시각화를 위해 IGES 포맷과 넙스기반 3D 설계 프로그램 라이노와의 인터페이스 과정을 수행하여 최종 변형 형상 표현을 위한 후처리 방법을 제시한다.

Anterior Cranial Base Reconstruction in Complex Craniomaxillofacial Trauma: An Algorithmic Approach and Single-Surgeon's Experience

  • Shakir, Sameer;Card, Elizabeth B.;Kimia, Rotem;Greives, Matthew R.;Nguyen, Phuong D.
    • Archives of Plastic Surgery
    • /
    • 제49권2호
    • /
    • pp.174-183
    • /
    • 2022
  • Management of traumatic skull base fractures and associated complications pose a unique reconstructive challenge. The goals of skull base reconstruction include structural support for the brain and orbit, separation of the central nervous system from the aerodigestive tract, volume to decrease dead space, and restoration of the three-dimensional appearance of the face and cranium with bone and soft tissues. An open bicoronal approach is the most commonly used technique for craniofacial disassembly of the bifrontal region, with evacuation of intracranial hemorrhage and dural repair performed prior to reconstruction. Depending on the defect size and underlying patient and operative factors, reconstruction may involve bony reconstruction using autografts, allografts, or prosthetics in addition to soft tissue reconstruction using vascularized local or distant tissues. The vast majority of traumatic anterior cranial fossa (ACF) injuries resulting in smaller defects of the cranial base itself can be successfully reconstructed using local pedicled pericranial or galeal flaps. Compared with historical nonvascularized ACF reconstructive options, vascularized reconstruction using pericranial and/or galeal flaps has decreased the rate of cerebrospinal fluid (CSF) leak from 25 to 6.5%. We review the existing literature on this uncommon entity and present our case series of n = 6 patients undergoing traumatic reconstruction of the ACF at an urban Level 1 trauma center from 2016 to 2018. There were no postoperative CSF leaks, mucoceles, episodes of meningitis, or deaths during the study follow-up period. In conclusion, use of pericranial, galeal, and free flaps, as indicated, can provide reliable and durable reconstruction of a wide variety of injuries.

디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석 (Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method)

  • 박준원;정연석;윤영철
    • 한국전산구조공학회논문집
    • /
    • 제37권1호
    • /
    • pp.67-76
    • /
    • 2024
  • 본 논문에서는 역학적 변수들을 측정하는 방안으로 디지털 이미지 프로세싱과 강형식 기반의 MLS 차분법을 융합한 DIP-MLS 시험법을 소개하고 추적점의 위치와 이미지 해상도에 대한 영향을 분석하였다. 이 방법은 디지털 이미지 프로세싱을 통해 시료에 부착된 표적의 변위 값을 측정하고 이를 절점만 사용하는 MLS 차분법 모델의 절점 변위로 분배하여 대상 물체의 응력, 변형률과 같은 역학적 변수를 계산한다. 디지털 이미지 프로세싱을 통해서 표적의 무게중심 점의 변위를 측정하기 위한 효과적인 방안을 제시하였다. 이미지 기반의 표적 변위를 이용한 MLS 차분법의 역학적 변수의 계산은 정확한 시험체의 변위 이력을 취득하고 정형성이 부족한 추적 점들의 변위를 이용해 mesh나 grid의 제약 없이 임의의 위치에서 역학적 변수를 쉽게 계산할 수 있다. 개발된 시험법은 고무 보의 3점 휨 실험을 대상으로 센서의 계측 결과와 DIP-MLS 시험법의 결과를 비교하고, 추가적으로 MLS 차분법만으로 시뮬레이션한 수치해석 결과와도 비교하여 검증하였다. 이를 통해 개발된 기법이 대변형 이전까지의 단계에서 실제 시험을 정확히 모사하고 수치해석 결과와도 잘 일치하는 것을 확인하였다. 또한, 모서리 점을 추가한 46개의 추적점을 DIP-MLS 시험법에 적용하고 표적의 내부 점만을 이용한 경우와 비교하여 경계 점의 영향을 분석하였고 이 시험법을 위한 최적의 이미지 해상도를 제시하였다. 이를 통해 직접 실험이나 기존의 요소망 기반 시뮬레이션의 부족한 점을 효율적으로 보완하는 한편, 실험-시뮬레이션 과정의 디지털화가 상당한 수준까지 가능하다는 것을 보여주었다.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

고등어분말수우프의 제조 및 정미성분에 관한 연구 (Preparation of Powdered Smoked-Dried Mackerel Soup and Its Taste Compounds)

  • 이응호;오광수;안창범;정부길;배유경;하진환
    • 한국수산과학회지
    • /
    • 제20권1호
    • /
    • pp.41-51
    • /
    • 1987
  • 다획성적색육어류인 고등어를 원료로하여 우리나라 사람의 기호에 맞고 즉석(卽席)수우프의 원료로 이용할 수 있는 고등어분말수우프를 제조하기 위한 가공조건 및 이의 효율적인 저장방법과 제품의 맛성분에 대하여 검토하였다. 가공조건은 고등어를 필레로 만들어 $95^{\circ}C$의 열수 중에서 10분간 자숙한 다음 압착하여 가다랑어자숙 엑스분 중에서 5분간 침지하였다. 이것을 $80^{\circ}C$에서 8시간의 훈건 및 엄증을 3차례 반복하여 수분함량이 약 $10\~12\%$되도록 하여 50 mesh 크기로 분쇄한후 $(PET/Al\;foil/CPP:\;5{\mu}m/15{\mu}m/70{\mu}m,\;15\times17cm)$ 적층필름주머니에 일정량 충전하여 포장용기내의 공기를 질소치환 혹은 탈산소제를 봉입포장하여 저장함으로서 제품의 품질변화를 최대한 억제시킬 수 있었다. 한편 제품제조시 가다랑어자숙엑스분중에 침지처리함으로서 제조중 지방산화의 억제 및 제품의 풍미를 향상시킬 수 있었다. 고등어분말수우프의 수분함량은 $11.3\~12.3\%$, 조지방 $12.0\%$, 조단백질 $73.0\%$, 회분 $3.2\%$ 및 구분활성은 $0.52\~0.56$의 범위로서 저장중 거의 변화가 없었고, 제품의 pH, 휘발성염기질소 및 아미노질소는 저장기간이 경과함에 따라 약간씩 증가하는 경향이었다. 저장중 제품의 수용성 및 지용성 갈변도는 함기포장제품(C)의 경우 증가하는 경향을 나타내나 질소치환포장제품(N)이 나 탈산소제 봉입 포장제 품(O)은 거의 변화가 없었고, 과산화물값, 카르보닐값 및 TBA값을 측정한 결과 제품(N) 및 (O)는 저장중 지방산화를 효율적으로 억제 할 수 있었다. 제품의 주요구성지방산은 16:0, 18:1, 22:6, 18:0 및 20:5 등이었으며 제품제조 및 저장중 폴리엔산은 다소 감소한 반면, 포화산 및 모노엔산의 조성비는 증가하였다. 고등어분말수우프제품의 주요한 맛성분이라고 추정되는 IMP의 함량은 $420.2\~454.2mg/100g$으로서 저장중 약간씩 감소하는 경향이었고, 주요불휘발성 유기산은 lactic acid, succinic acid, $\alpha-ketoglutaric\;acid$ 등으로 함량은 각각 902.2 mg/100 g, 28.3 mg/100g 및 8.6mg/100g이었다. 이외에 malic acid 등 6종의 유기산이 미량 함유되어 있었다. 제품의 유리아미노산 및 관련화합물의 조성은 histidine이 641.8 mg/100g으로 가장 많았고, alanine 214.7 mg/100g, hydroxyproline이 48.9mg/100g, 이외에 lysine, glutamic acid 및 anserine 등이 전체의 $80.8\%$를 차지하였다. 고등어분말수우프의 맛성분은 건물량 기준으로 유리아미노산 및 관련화합물이 1,279.4 mg/100g, 불휘발성유기산이 948.1mg/100g, 핵산 관련물질 672.8 mg/100g, 총 creatinine이 430.4 mg/100g, betaine 86.6mg/100g 및 미량의 TMAO로 이루어져 있었고 국물로 우려낼때 맛성분의 추출조건은 $100^{\circ}C$에서 1분간의 고온단시간 추출이 적합하였다.

  • PDF