• Title/Summary/Keyword: mesh structure

Search Result 625, Processing Time 0.032 seconds

A Comparative Study for the Fatigue Assessment of Side Shell Longitudinals on 8,100 TEU Container Carrier using Hot Spot Stress and Structural Stress Approaches (구조응력 및 핫스팟 응력을 이용한 8,100 TEU 컨테이너선 선측 종늑골구조의 피로 강도 평가에 대한 비교 연구)

  • Kim, Seong-Min;Kim, Myung-Hyun;Kang, Sung-Won;Pyun, Jang-Hoon;Kim, Young-Nam;Kim, Sung-Geun;Lee, Kyong-Eon;Kim, Gyeng-Rae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.296-302
    • /
    • 2008
  • Recently, a mesh-size insensitive structural stress definition (structural stress method) is proposed that gives a stress state at weld toe with a relatively large mesh size. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. In this study, a fatigue strength assessment for a side shell connection of a container vessel using both the hot spot stress and the Battelle structural stress method was carried out. A consistent approach to compute the extrapolated hot spot stress for design purpose is described and current fatigue guidance is evaluated. Fatigue strength predicted by the two methodologies, e.g. hot spot stress and structural stress approaches, at hot spot locations of a typical ship structure are compared and discussed.

Investigation of Optimum Condition of Heat Treatment and Flow to Improve H2S Adsorption Capacity for Practical use of an Activated Carbon Tower (활성탄 흡착탑의 실용화를 위한 최적 유동특성 선정 및 열처리 조건에 따른 황화수소 포집능 향상 연구)

  • Jang, Younghee;Kim, Bong-Hwan;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.91-96
    • /
    • 2021
  • This study was conducted to improve the operating conditions of an adsorption tower filled with potassium impregnated activated carbon for high hydrogen sulfide capture capacity. Heat treatment modified the surface properties of activated carbon, and ultimately determined its adsorption capacity. The activated carbon doped with potassium showed 57 times more adsorption at room temperature than that of using the raw adsorbent. It is believed that uniform pore formation and strong bonding of the potassium on the surface of carbon contributed to the chemical and physical absorption of hydrogen sulfide. The SEM analysis on the surface structure of various commercial carbons showed that the modification of surface properties through the heat treatment generated the destruction of pore structures resulted in the decrease of the absorption performance. The pressure drop across the activated carbon bed was closely related with the grain size and shape. The optimum size of irregularly shaped activated carbon granules was 2~4 mesh indicating economical feasibility.

Design and Evaluation of a Knee Protector using a 3D Printing Pad (3D 프린팅 패드를 활용한 무릎 보호대의 설계 및 평가)

  • Xi Yu Li;Jung Hyun Park;Jeong Ran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.221-229
    • /
    • 2023
  • This study aims to develop knee protectors that provide high safety and fitness, while incorporating a motion-adaptable 3D-printed pad. These protectors were evaluated by individuals who experience knee discomfort or pain. The results are as follows. First, the 3Dprinted pad design of a hexagonal mesh structure, which is modeled for excellent appearance and knee movement. Each unit of the mesh has a outer layer of 2mm thick, a spacer layer of 1 mm in diameter, and is connected by a 1.5 mm bridge. The bridge was extended up to 1.2 cm. Second, the knee brace was designed in three types - cylinder, strap, and combination by Universal design. Impact protection measurements of the three knee protectors demonstrated roughly 80% reduction in impact. Third, based on usability evaluation, cylinder type protectors have the highest ratings in most areas, primarily because of their ease of use. The strap type protector received positive reviews in terms of appearance and care, and the combination type provided stable knee protection. This study demonstrated the potential industrial application of 3D printing technology by designing and evaluating protective products for the human body. The results of this study are expected to aid knee protector manufacturers in developing practical products and promoting the development of protective equipment for other body parts or purposes.

Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank (독립형 LNG 화물창의 공학적 결함 평가)

  • Jae Hoon Seo;Kyu-Sik Park;Inhwan Cha;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.

Noise Control of Plate Structures with Optimal Design of Multiple Piezoelectric Actuators (복수 압전 가진기의 최적 설계를 통한 판구조물의 소음제어)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.263-270
    • /
    • 1996
  • Noise control of a plate structure with multiple disk shaped piezoelectric actuators is studied. The plate is excited by an acoustic pressure field produced by a noise source located below the plate. Finite element modeling is used for the plate structure that supports a combination of three dimensional solid, flat shell and transition elements. The objective function, in the optimization procedure, is to minimize the sound energy radiated onto a hemispherical surface of given radius and the design parameters are the locations and sizes of the piezoelectric actuators as well as the amplitudes of the voltages applied to them. Automatic mesh generation is addressed as part of the modeling procedure. Numerical results for both resonance and off resonance frequencies show remarkable noise reduction and the optimal locations of the actuators are found to be close to the edges of the plate structure. The optimized result is robust such that when the acoustic pressure pattern is changed, reduction of radiated sound is still maintained. The robustness of an optimally designed structure is also tested by changing the frequency of the noise source using only the actuator voltages as design parameters.

  • PDF

A detailed information browsing as a standard of the hierarchical structure on 3D national treasure building (3D 건조물 문화재의 계층적 구조를 기반으로 한 상세정보브라우징)

  • Jung, jung-il;Cho, Jin-so
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.816-821
    • /
    • 2009
  • In this paper, I would like to talk about a step by step detailed information browsing which is founded on hierarchical structure for offering suitable information about the mass 3D data of a national treasure building to user as a standard of the visual distance. A step by step detailed information of the national treasure building of gigantic proportions offers a process of detailed information browsing which decided suitable hierarchical structure as considering of the preprocessing procedure which produces hierarchical structure and a visual distance of user. In the preprocessing procedure, 3D data is divided and controlled by optimized spacial structures. The relevance connection between the inner spacial surface is then examined and reconfigured in order to prevent holes or distortions. Finally, relative information data is created. In detailed information browsing, by examining the visual distance between model and user, then by browsing proper step of data, suitable level model data can be provided to the users in accordance with the position of observation.

  • PDF

Form-finding of Free-form Membrane Structure based on Geometrically Non-linear Analysis and Interface method (기하학적 비선형해석을 이용한 비정형 막 구조물의 형상탐색과 인터페이스 기법)

  • Kim, Jee-In;Na, Yoo-Mi;Kang, Joo-Won;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The membrane structure maintains stable form by giving initial tension to ductile membrane and increasing the stiffness of exterior that is much adopted in the large span spatial structure by making its thickness thin. This kind of membrane structure has characteristic that can express free-form curve, so the selection of structural form is very important. So, this paper proposes the expression of free-form surface based on NURBS basis function and the finite element method considering geometrical nonlinearity for the deduction of large deformation result. Also, for minimizing the approximation of the surface that is derived from the form-finding result, the interface method that change finite element mesh to NURBS is proposed. So, the optimum surface of free-form membrane is derived.

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

Load-carrying Capacities of Safety Structures on Wind-resistant Analyses of Cable-stayed Bridge (사장교의 내풍해석을 통한 인명보호 구조물의 내하능력평가)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.587-594
    • /
    • 2022
  • In the 2000s, a lot of cable-type grand bridges are being built in consideration of economic aspects such as the reduction of logistics costs and the distribution of traffic volume due to rapid economic development. In addition, because the recently installed grand bridges are designed in an aesthetic form that matches the surrounding environment as well as the original function of the road bridge, and serves as a milestone in an area and is used as an excellent tourism resource, attracting many vehicles and people, there is an urgent need for a safety structure that can ensure the safety of not only vehicles but also people. In order to make cable-stayed bridge safe on wind for additional five safety structures, main girder models with and without safety structures for wind-tunnel experiments was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel experiment results. From the wind tunnel experiments for the aerodynamic force coefficients of main girder with five safety structures and the wind resistant analyses of cable-stayed bridge without safety structure and with safety structure, it was concluded that the best form of wind-resistant safety was shown in the order of mesh, standard, bracing, hollow, and closed type. And wind-resistant safety of cable-stayed bridge with hollow and closed type on design wind speed 68.0m/sec was not secured. Finally, as five safety structures are installed, maximum rate of stress increments was shown in the order of steel main beam, steel floor beam, concrete floor beam and cables.

A Study on the Application of Physical Soil Washing Technology at Lead-contaminated Shooting Range in a Closed Military Shooting Range Area (폐 공용화기사격장 내 납오염 사격장 군부지의 물리적 토양세척정화기술 적용성 연구)

  • Jung, Jaeyun;Jang, Yunyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.492-506
    • /
    • 2019
  • Heavy metal contaminants in the shooting range are mostly present in a warhead circle or a metal fragment present as a particle, these fine metal particles are weathered for a long period of time is very likely that the surface is present as an oxide or carbon oxide. In particular, lead which is a representative contaminant in the shooting range soil, is present as more fine particles because it increases the softness and is stretched well. Therefore, by physical washing experiment, we conducted a degree analysis, concentration of heavy metals by cubic diameter, composition analysis of metallic substances, and assessment of applicability of gravity, magnetism and floating selection. The experimental results FESEM analysis and the measurement results lead to the micro-balance was confirmed thatthe weight goes outless than the soil ofthe same size in a thinly sliced and side-shaped structure according to the dull characteristics it was confirmed that the high specific gravity applicability. In addition, the remediation efficiency evaluation results using a hydrocyclone applied to this showed a cumulative remediation efficiency of 71%,twice 80%, 3 times 91%. On the other hand, magnetic sifting showed a low efficiency of 17%,floating selection -35mesh (0.5mm)target soil showed a relatively high efficiency to 39% -10mesh (2mm) efficiency was only 16%. The target treatment diameter of soil washing should be 2mm to 0.075mm, which is applied to the actual equipment by adding an additional input classification, which would require management as additional installation costs and processes are constructed. As a result, it is found that the soilremediation of shooting range can be separately according to the size of the warhead. The size is larger than the gravel diameter to most 5.56mm, so it is possible to select a specific gravity using a high gravity. However, the contaminants present in the metal fragments were found to be processed by separating using a hydrocyclone of the soil washing according to the weight is less than the soil of the same particle size in a thinly fragmented structure.