• Title/Summary/Keyword: mesh structure

Search Result 625, Processing Time 0.026 seconds

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer (패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동)

  • Kwon, Ki-Seong;Chun, Jae-Yeong;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.108-115
    • /
    • 2020
  • In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

Fabrication of Stable Water/Oil Separation Filter Using Effect of Surface Wettability (표면 젖음성을 이용한 물/오일 분리막 제작)

  • Kim, Dohyeong;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.213-217
    • /
    • 2016
  • The superhydrophobic and superoleophobic meshes surfaces have been used in various applications such as self-cleaning, anti-icing, gas exchange, oil-water separation, sound-wave penetrable anti-wetting structures, etc. In particular, there are many studies for oil-water separation with environmental issues. Because of high pressure and dynamic environment, oil-water separation filters must have stable surface properties as super-hydrophobicity and superoleophobicity. The oleophobicity of surface depends on the surface chemistry and roughness of the surface. The roughness of oleophobic surface enhances its static contact angle and stability. The multi-scale hierarchical structure provides a stable superhydrophobic state by maintaining a Cassie state. In this research, we fabricated a superoleophobic mesh with a multi-scale hierarchical structure to increase the pressure resistance and adjusted a size of the mesh hole.

A Study on Noise Reduction for an Industrial Right-angled Reducer (산업용 직각형 감속기의 소음 저감에 대한 연구)

  • Seo, Hong-Seung;Park, Sung-Pil;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.546-552
    • /
    • 2011
  • In this study, noise sources of a reducer which is combined a spiral bevel gear and a planocentric gear are identified by experimental method and the noise was reduced by the structure modification of the reducer. In order to identify the noise sources, noise and vibration signals were measured by microphone and accelerometer and these signals were analyzed with waterfall plot. In addition, the frequency response functions were obtained to prove the noise and vibration sources. It was found that the resonance was generated by the gear mesh frequencies and natural frequency of the reducer. The noise of the reducer could be reduced by structure modification.

A Study on Noise Reduction for the reducer designed right angle (산업용 직각형 감속기의 소음 저감에 대한 연구)

  • Seo, Hong-Seung;Park, Sung-Pil;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.51-56
    • /
    • 2011
  • In this study, noise sources of a reducer which is combined a spiral bevel gear and a planocentric gear are identified by experimental method and the noise was reduced by the structure modification of the reducer. In order to identify the noise sources, noise and vibration signals were measured by microphone and accelerometer and these signals were analyzed with waterfall plot. In addition, the frequency response functions were obtained to prove the noise and vibration sources. It was found that the resonance was generated by the gear mesh frequencies and natural frequency of the reducer. The noise of the reducer could be reduced by structure modification.

  • PDF

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

An Efficient Dynamic Load balancing Strategy for Tree-structured Computations (트리구조의 계산을 위한 효율적인 동적 부하분산 전략)

  • Hwang, In-Jae;Hong, Dong-Kweon
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.455-460
    • /
    • 2001
  • For some applications, the computational structure changes dynamically during the program execution. When this happens, static partitioning and allocation of tasks are not enough to achieve high performance in parallel computers. In this paper, we propose a dynamic load balancing algorithm efficiently distributes the computation with dynamically growing tree structure to processors. We present an implementation technique for the algorithm on mesh architectures, and analyze its complexity. We also demonstrate through experiments how our algorithm provides good quality solutions.

  • PDF

Analysis of Reinforced Concrete Panel subjected to Blast Load using Parallel and Domain Decomposition (병렬과 영역분할을 이용한 폭발하중을 받는 철근콘크리트패널의 해석)

  • Park, Jae-Won;Yun, Sung-Hwan;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • Damage of reinforced concrete panel subjected to blast load using parallel and domain decomposition is analyzed. The numerical results are sensitive to the mesh size because blast waves are generated during the extremely short term. In order to investigate the effect of mesh size on the blast wave, the analysis results from various wave mesh size using AUTODYN, the explicit finite element analysis program, were compared with existing experimental results. The smaller mesh size was, the higher accuracy was. However, in this case, the analysis was inefficient. Therefore, in order to increase numerical efficiency, the parallel analysis using decomposed method based on Euler and Lagrangian description was performed. Finally, the decomposed method using both the structure domain based on Lagrange description and the blast wave domain based on Euler description was more efficient than the decomposed method using only the Lagrange mesh on structure domain.

Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1145-1167
    • /
    • 2016
  • This study presents a new method to computes analytical fragility curves of a structure subject to tsunami waves. The method uses dynamic analysis at each stage of the computation. First, the smooth particle hydrodynamics (SPH) model simulates the propagation of the tsunami waves from shallow water to their impact on the target structure. The advantage of SPH over mesh based methods is its capability to model wave surface interaction when large deformations are involved, such as the impact of water on a structure. Although SPH is computationally more expensive than mesh based method, nowadays the advent of parallel computing on general purpose graphic processing unit overcome this limitation. Then, the impact force is applied to a finite element model of the structure and its dynamic non-linear response is computed. When a data-set of tsunami waves is used analytical fragility curves can be computed. This study proves it is possible to obtain the response of a structure to a tsunami wave using state of the art dynamic models in every stage of the computation at an affordable cost.