• Title/Summary/Keyword: mesh grid

Search Result 339, Processing Time 0.027 seconds

Improved Mesh Grounding Electrode Model by Changing Arrangements of Internal Conductors of the Mesh Grounding Electrode (메쉬접지극의 내부도체 배치에 따른 개선된 메쉬접지극 모델)

  • Shim, Yong-Sik;Choi, Hong-Kyoo;Kim, Tae-Hoon;Song, Young-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.60-66
    • /
    • 2010
  • Mesh grounding electrodes in Korea and abroad are designed as lattice-shaped equidistance grounding grids. In case of a lattice-shaped grounding Grid, however, there is a problem of higher touch voltage at the corner of the grid relative to the center. To overcome this problem, we used oblique-shaped equidistance grounding grid to reduce the area of the corner where mesh voltage occurs. As a result the mesh voltage was reduced. Therefore, this paper suggests the use of oblique-shaped grounding grid instead of the existing lattice-shaped ones. It applied the same grounding design dimensions for both lattice-shaped and oblique-shaped grounding grids, compared and analyzed mesh voltage, GPR, ground resistance, total length of grounding conductor, verified that oblique-shaped grounding grid is superior to the lattice-shaped.

Numerical Simulation of Wind Pressures on a High-rise Building by Auto-mesh System

  • Tang, Yuanzhe;Cao, Shuyang
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • This paper describes large eddy simulation of wind pressures on a square cylinder in a uniform flow and a high-rise building immersed in an atmospheric turbulent boundary layer. For the atmospheric boundary layer case, the inflow turbulence is generated by a numerical wind tunnel. In the numerical simulation, particular attention is devoted to the performance of an auto hexahedral non-structural mesh. Both simulations are performed for three grid systems: an auto hexahedral non-structured grid, a structured Cartesian grid and a non-structured triangular prism grid, and for three grid numbers. The present study shows that the auto hexahedral unstructured mesh achieves the best simulation results for wind pressures on the square cylinder and the high-rise building. When the grid number is sufficiently large, the differences among the results obtained from the three investigated grid systems are not significant. However, the advantage of the auto hexahedral unstructured mesh becomes clear when the grid number decreases, because it enables a balanced distribution of orthogonal grids. The results described in this paper demonstrate that the auto hexahedral non-structured mesh has good potential applicability to simulation of urban flows.

Computation of Thermal Flow for Automotive Lamp by Using Geometric Octree Method (기하학적 Octree 격자생성법을 이용한 자동차 헤드램프 내부의 열유동 계산)

  • Sah Jong-Youb;Park Jong-Ryul;Kang Dong-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.152-156
    • /
    • 2001
  • Three dimensional orthogonal grid generation is able to control effectively the grid spacing near the boundaries, but there are some difficulty to meshing complex geometry. The mesh complex geometry by orthogonal grid generation method must divide block of geometry It is required a careful skill, and long time. Its also difficulty to make unstructured mesh on complex geometry. Particularly, three dimensional geometry must have more time and effort. Recently, there have been growing interests in mesh generation of complex grometry, aslike an automobile headlamp, the heart. The method of easily meshing complex geometry is resarched to solve them. We suggest octree grid into one among these methods. As octrce grid is automaticaly adapted at the boundaries by determine the level operations to control the grid spacing near the boundaries are unnecessary. In this paper we showed throe dimensional mesh generation, and heat-flow analysis on the octree mesh.

  • PDF

Application of Grid-based Approach for Auto Mesh Generation of Vacuum Chamber (자동 요소망 생성을 위한 격자구성기법 적용)

  • Lee J.S.;Park Y.J.;Chang Y.S.;Choi J.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.844-847
    • /
    • 2005
  • A seamless analysis of complex geometry is one of greatly interesting topic. However, there are still gaps between the industrial applications and fundamental academic studies owing to time consuming modeling process. To resolve this problem, an auto mesh generation program based on grid-based approach has been developed for IT-product in the present study. At first, base mesh and skin mesh are generated using the information of entities which extracted from IGES file. Secondly the provisional core mesh with rugged boundary geometry is constructed by superimposing the skin mesh as well as the base mesh generated from the CAD model. Finally, the positions of boundary nodes are adjusted to make a qualified mesh by adapting node modification and smoothing techniques. Also, for the sake of verification of mesh quality, the hexahedral auto mesh constructed by the program is compared with the corresponding tetrahedral free mesh and hexahedral mapped mesh through static finite element analyses. Thereby, it is anticipated that the grid-based approach can be used as a promising pre-processor for integrity evaluation of various IT-products.

  • PDF

Improving the Reliability of IEEE 802.11s Based Wireless Mesh Networks for Smart Grid Systems

  • Kim, Jaebeom;Kim, Dabin;Lim, Keun-Woo;Ko, Young-Bae;Lee, Sang-Youm
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.629-639
    • /
    • 2012
  • A challenge faced by smart grid systems is providing highly reliable transmissions to better serve different types of electrical applications and improve the energy efficiency of the system. Although wireless networking technologies can provide high-speed and cost-effective solutions, their performance may be impaired by various factors that affect the reliability of smart grid networks. Here, we first suggest the use of IEEE 802.11s-based wireless LAN mesh networks as high-speed wireless backbone networks for smart grid infrastructure to provide high scalability and flexibility while ensuring low installation and management costs. Thereafter, we analyze some vital problems of the IEEE 802.11s default routing protocol (named hybrid wireless mesh protocol; HWMP) from the perspective of transfer reliability, and propose appropriate solutions with a new routing method called HWMP-reliability enhancement to improve the routing reliability of 802.11s-based smart grid mesh networking. A simulation study using ns-3 was conducted to demonstrate the superiority of the proposed schemes.

FREE SURFACE FLOW ANALYSIS BY SOROBAN GRID BASED CIP MEHTOD (Soroban grid 기반 CIP법을 이용한 자유표면 유동해석)

  • Im, H.N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.326-334
    • /
    • 2010
  • In this study, we provide a comprehensive review of the CIP(Constrained Interpolation Pro file/Cubic Interpolated Propagation) method with a pressure-based algorithm that is known as a general numerical solver for soled liquid, gas and plasmas. And also we introduce a body-fitted grid system(Soroban grid) for computation of strongly nonlinear marine hydrodynamic problems such as slamming water on deck, wave impact by green water. This grid system can keep the third-order accuracy in time and space with the help of the CIP method. The grid system consists of the straight lines and grid points. In the 2-dimensional grid case, each grid points moving in these lines like abacus - Soroban in Japanese. The length of each line can be different and the number of grid points in each line can be different. Mesh generation and searching of upstream departure point are very simple and possible to mesh-free treatment. To optimize computation of free-surface and multi-fluid flows, We adopt the C-CUP method. In most of the earlier computations, the C-CUP method was used with a staggered-grid approach. Here, because of the mesh free nature of the Soroban grid, we use the C-CUP method with a collocated-grid approach.

  • PDF

그래핀 합성 및 TEM grid막으로의 응용

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.461-461
    • /
    • 2011
  • 최근의 나노기술의 발전과 함께 나노미터크기의 물질들의 물성과 미세구조 등을 분석하기 위한 노력들이 활발히 이루어지고 있다. 투과전자현미경(transmission electron microscope; TEM)은 나노물질의 미세구조 관찰, 화학성분 분석, 전자기적 특성평가가 가능한 초정밀 분석장비이다. TEM 관찰을 위한 시편의 제작방법중 TEM 그리드(grid)를 사용하는 방법은, 분석하고자 하는 물질을 망(mesh) 형태의 그리드에 도포하여 샘플을 준비하는 방법으로 다른 방법에 비해 아주 빠르고 간편한 장점이 있다. 그러나 TEM 그리드에 나노물질을 분산/도포하여 공중에 떠있는 형태로 샘플을 제작하려면, 나노물질이 mesh 사이로 빠져나오지 않도록 그리드 mesh의 간격이 아주 미세하여야 하는데, 일반적으로 mesh의 크기가 미세할수록 그리드의 가격은 높아진다. 또한 기존에 사용되고 있는 비정질 탄소박막으로 덮여진 그리드는 극미세 크기의 나노물질 및 탄소나노물질을 분석할 경우, 고해상도의 TEM상을 얻는데 한계가 있다. 한편 그래핀은 2차원의 육각판상의 구조로 탄소원자가 빼곡히 채워진 흑연 한 층의 나노재료이다. 이는 원자단위 두께로 가장 얇은 물질로서 기계적 강도가 우수하여 지지막으로의 응용이 가능하다고 알려져 있다. 따라서 TEM grid막으로 사용할 경우 기존의 고가의 미세한 mesh가 형성된 그리드를 사용하지 않아도 나노물질을 효과적으로 분석할 수 있을 것으로 예상 된다. 본 연구에서는 열화학증기증착법(thermal chemical vapor deposition; TCVD)을 이용하여 300 nm 두께의 니켈박막이 증착된 기판위에 대면적으로 합성한 그래핀을 TEM 관찰용 그리드 위에 전사(transfer)함으로써 나노물질이 그리드 mesh사이로 빠져나오지 않는 저가의 TEM 그리드 제작 방법 및 응용 가능성에 대하여 보고한다.

  • PDF

Composition of Fine Mesh Model for Explication of Mesoscale Wind Field (중규모 바람장 해석을 위한 Fine Mesh Model의 구성)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.159-168
    • /
    • 1995
  • To predict reasonably the movement and the concentration of the pollutants in the coastal area. A simulation model should be prepared considering detail topography with land-sea and the urban effects, and the resolution near the source. The explicit method can not be applied due to the instability of the numerical calculation in high horizontal-grid resolution, while the ADI scheme satisfied with the high horizontal grid resolution and can be used in the fine mesh system which shows the detail topography, atmospheric flow The ADI method which studied the high horizontal grid resolution was excellent. The two dimensional model used in the study using ADI method is proved as a reasonable model to predict the wind field in any small scale area including mountainous coastal urban area.

  • PDF

A Numerical Study of laminar vortex-shedding past a circular cylinder (원형 Cylinder 주위의 Vortex Shedding에 관한 수치 해석 연구)

  • Kim T. G.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.33-38
    • /
    • 2000
  • A Numerical study of laminar vortex-shedding past a circular cylinder has been performed widely by many researchers. Many factors, such as numerical technique and domain size, number and shape of grid, affected predicting vortex shedding and Strouhal number. In the present study, the effect of convection scheme, time discretization methods and grid dependence were investigated. The present paper presents the finite volume solution of unsteady flow past circular cylinder at Re=200, 400. The Strouhal number was predicted using UDS, CDS, Hybrid, Power-law, LUDS, QUICK scheme for convection term, implicit and crank-nicolson methods for time discretization. The grid dependence was investigated using H-type mesh and O-type mesh. It also studied that the effect of mesh size of the nearest adjacent grid of circular cylinder. The effect of convection scheme is greater than the effect of time discretization on predicting Strouhal. It has been found that the predicted Strouhal number changed with mesh size and shape.

  • PDF

DEVELOPMENT OF SPECIALIZED GRID GENERATION PROGRAM FOR MULTI-ELEMENT AIRFOIL AERODYNAMIC ANALYSIS (다중익형 공력 계산을 위한 특화 격자생성 프로그램 개발)

  • Nam, D.W.;Lee, Y.J.;Lee, J.Y.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.85-89
    • /
    • 2016
  • Wing is the most important part of aircraft which produces lift. In general when aircraft takes off or lands, high lift is required and additional devices are adopted in front and aft-side of wing, which constitute so-called multi element airfoils. The objective of this research is to develop a specialized grid generation program to help engineers in reducing human labor and eliminating time-consuming process for mesh regeneration by deforming the initially-given grid system with efficient deforming method. This paper describes briefly about the mesh deformation methods, and provides some results to verify the quality of deformed mesh and eventually correctness of current approach.