• Title/Summary/Keyword: mesenchymal

Search Result 1,151, Processing Time 0.032 seconds

CALCIFYING ODONTOGENIC CYST ASSOCIATED WITH COMPLEX ODONTOMA : CASE REPORT (치아종을 동반한 석회화 치성낭의 치험례)

  • Lee, Sang-Yup;Kim, Dae-Eop;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.645-650
    • /
    • 2004
  • Calcifying odontogenic cyst(COC) is a rare developmental odontogenic cyst, which shows diverse classification and terminology. Cystic epithelial lining of COC is composed of basal cell layer of columnar cells and overlying layer of stellate reticulum. In the epithelium, ghost cells that might induce adjacent mesenchymal tissue to develop dental organ are shown characteristically. In spite of low rate of recurrence, we have to get a histopathological examination so that odontogenic lesions may recur without fully curettage of lining epithelium. 7-year-old male child came pediatric dentistry in wonkwang university dental hospital in order to check the delayed eruption of left maxillary central incisor. Radiographic examination revealed a well-defined radiopaque mass, overlapping impacted left central and lateral incisor crown. Enucleated mass was tooth-like features and also had epithelium lining. Results of histopathologic procedure, we saw the lots of ghost cell and proliferating hard dental tissues. Also we saw the cystic epithelium cells. It revealed diagnosis of the COC associated complex odontoma. For this reason one should consider of COC when patients present odontoma-like lesion with impacted tooth.

  • PDF

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.

A Case of Solitary Fibrous Pleura Tumor Associated with Severe Hypoglycemia: Doege-Potter Syndrome

  • Jang, Jong Geol;Chung, Jin Hong;Hong, Kyung Soo;Ahn, June Hong;Lee, Jae Young;Jo, Jae Ho;Lee, Dong Won;Shin, Kyeong Cheol;Lee, Kwan Ho;Kim, Mi Jin;Lee, Jung Cheul;Lee, Jang Hoon;Lee, Jae Kyo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.2
    • /
    • pp.120-124
    • /
    • 2015
  • Solitary fibrous tumor of the pleura (SFTP) is a rare primary intrathoracic tumor that arises from mesenchymal tissue underlying the mesothelial layer of the pleura. It usually has an indolent clinical course. The hypoglycemia that accompanies SFTP was first described by Doege and Potter independently in 1930, hence the eponym Doege-Potter syndrome (DPS). The incidence of DPS is reported to be ~4%. In this report, we present a typical case of DPS that was cured through complete surgical resection.

Neuronal Phenotypes and Gene Expression Profiles of the Human Adipose Tissue-Derived Stromal Cells in the Neuronal Induction (신경 분화 유도한 인체 지방조직 유래 간질세포의 신경 표현형과 유전자 발현)

  • Shim, Su Kyung;Oh, Deuk Young;Jun, Young Joon;Lee, Paik Kwon;Ahn, Sang Tae;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Purpose: Human adipose tissue-derived stromal cells(hADSCs) can be expanded in vitro and induced to differentiate into multiple mesenchymal cell types. In this study we have examined various neuronal phenotypes and gene expression profiles of the hADSCs in the neuronal induction. Methods: The hADSCs were isolated from human adipose tissue and they were characterized by the flow cytometry analysis using CD13, CD29, CD34, CD45, CD49d, CD90, CD105 and HLA-DR cell surface markers. We differentiated the hADSCs into the neuronal lineage by using chemical induction medium and observed the cells with contrast microscopy. The immunocytochemistry and western blotting were performed using the NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III antibodies. Results: The hADSCs were positive for CD13($90.3{\pm}4%$), CD29($98.9{\pm}0.7%$), CD49d($13.6{\pm}6%$), CD90 ($99.4{\pm}0.1%$), CD105($96%{\pm}2.8%$) but negative for CD34, CD45 and HLA-DR. The untreated cultures of hADSCs predominately consisted of spindle shaped cells and a few large, flat cells. Three hours after the addition of induction medium, the hADSCs had changed morphology and adopted neuronal-like phenotypes. The result of immunocytochemistry and western blotting showed that NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III were expressed. However, NSE, NeuN, Vimentin were weakly expressed in the control. Conclusion: Theses results indicate that hADSCs have the capabillity of differentiating into neuronal lineage in a specialized culture medium. hADSCs may be useful in the treatment of a wide variety of neurological disorders.

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Sung, Eun-Ah;Lee, Seung Eun;Shin, Nari;Choi, Soon Won;Seo, Yoojin;Kim, Hyung-Sik;Kang, Kyung-Sun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.8.1-8.14
    • /
    • 2018
  • We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

Manufacture and Characterization of Silkworm Gland Hydrolysate (누에 실샘 가수분해물의 제조 및 특성 규명)

  • Hwang, Jung Wook;Lee, Heui Sam;Kim, Hojin;Kim, Kyu-Oh;Choi, Yong-Soo
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.76-81
    • /
    • 2012
  • Silk protein has been explored to be used for biomedical applications for several decades. However, it has not been used in this field cause to their irreversible crystallization after dissolving in water. The existing methods of silk protein hydrolysis using silkworm cocoon were used with harmful solvents and through a very complicated process. Therefore, we have developed novel methods for the production of water-soluble hydrolysate using silkworm gland. We manufactured two types of silkworm gland-derived hydrolysate (water-soluble SGH, SSGH; total SGH, TSGH) and compared the characteristics with commercial cocoon-derived sericin hydrolysate (CSH). The molecular weight of SGH ranged from 7 to 50 kDa (SSGH) and 5 to 15 kDa (TSGH) within glycine, alanine, and aspartic acid as a main amino acid composition. In contrast, CSH ranged from 15 to 50 kDa within serine and aspartic acid. The results of FTIR implied that SGH was more soluble form than CSH, as shown by the decrease in the ${\beta}$-sheet structure at $1630cm^{-1}$ on amide I peak. In comparison with 10% fetal bovine serum, 0.1% (1 mg/ml) SSGH had equivalent effect on the proliferation of human dermal fibroblasts and mesenchymal stem cells. All results of the SSGH made by novel manufacturing process indicate the SSGH is more preferable as a culture medium supplement than cocoon-derived sericin.

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian;Liu, Zhihua;Guo, Ling;Liu, Rui;Li, Rulei;Chu, Xiang;Yang, Jiajia;Luo, Jia;Chen, Faming;Deng, Manjing
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.763-772
    • /
    • 2019
  • Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling

  • Song, An;Wang, Yi;Jiang, Feng;Yan, Enshi;Zhou, Junbo;Ye, Jinhai;Zhang, Hongchuang;Ding, Xu;Li, Gang;Wu, Yunong;Zheng, Yang;Song, Xiaomeng
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.468-480
    • /
    • 2021
  • Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.

Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect

  • Ge, Qing;Green, David William;Lee, Dong-Joon;Kim, Hyun-Yi;Piao, Zhengguo;Lee, Jong-Min;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1016-1023
    • /
    • 2018
  • Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to up-regulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.

Cytotoxicity of Various Calcium Silicate-based Materials with Stem Cells from Deciduous Teeth (유치 줄기세포에 대한 다양한 규산칼슘계 재료의 세포독성)

  • Yun, Jihye;You, Yong-Ouk;Ahn, Eunsuk;Lee, Jun;An, So-Youn
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • The purpose of this study was to compare and evaluate the cytotoxicity of 3 calcium silicate-based materials (CSMs) on stem cells from human exfoliated deciduous teeth (SHEDs). The powder of Retro $MTA^{(R)}$ (RM), $EZ-Seal^{TM}$ (EZ) and ENDOCEM $Zr^{(R)}$ (EN) was eluted with SHED culture media and then filtered. The SHEDs were cultured in the presence of the various concentrations of the eluate. To investigate the effect of the 3 CSMs on SHED proliferation, the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was performed. Flow cytometry analysis was also performed to identify any changes in the cellular phenotype. The absorbance values of the SHEDs cultured in the eluate of samples at a 10% concentration showed the following relation: RM > EN > EZ (p = 0.0439). However, the SHEDs maintained their mesenchymal phenotype regardless of product exposure. Although the 3 CSMs did not alter the SHED stem cell markers, EZ may be a less cytocompatible than RM and EN.