• Title/Summary/Keyword: mercury-resistant bacteria

Search Result 8, Processing Time 0.039 seconds

Lsolation and Characterization of Mercury- and Cadmium-resistant Bacteria isolated from Industrial complex Wastewater of Taejon Area (대전 지역의 공단 폐수에서 분리한 수은과 카드뮴 내성 세균의 분리 및 특성)

  • 유경만;전희근
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.249-258
    • /
    • 1997
  • Mercury- and cadmium-resistant bacteria were Isolated from an Industrial complex wastewater of Taejon area. All of them were motile, gram negative rods. In the results of physicochemical test and VITEK card test. HM1 was Identified with Achetobacter cd- coaceucus, CM3 was Identified 65 Commonas acidovorns, HM2, HM3, CMI , and CM4 were Pseudomonas sp., but HM4 and CM2 were unidenteed. They were tested for subceptlbility to 14 heavy metals. Mercury-resistant bacteria(HM1, HM2, HM3, and HM4) were sensitive to low concentration(100~400ppm) of $Cd^{2+}$, $Co^{2+}$. $Zn^{2+}$, and Ni2+, while cadmium-resistant bacteria(CM1, CM2, CM3, and CM4) showed resistance up to the high concentration(600~ 1, 200ppm) of these metal loons. As a result of resistance spectrum test of mercury-resistant bacteria, HM1 was broad-spectrum strain, HM2. HM3, and HM4 were narrow-spectrum stratas. Transmission electron microscopic examination of cell wall of HM1 culture grown with and without 100ppm of $HgCl_2$ showed remarkably merphological abnormalities. In the result of atomic absorption spectrometric analysis of cadmium-resistant bacteria grown at 200ppm of $CdCl_2$ for 6h, all of them accumulated cadrnium(14ppm~57ppm) In cell. In cadinium-resistant bacteria, CM1, CM2, and CM4 were spared from the Inhibitory effect of $Cd^{2+}$ by the addition of $Mn^{2+}$, CM4 were also spared from the Inhibitory effect of $Cd^{2+}$ by the addition of $Mn^{2+}$ as well as $Zn^{2+}$.

  • PDF

Characteristics of Mercury-resistant Bacteria Isolated from River Water (하천에서 분리한 수은 내성세균의 특성)

  • 정현미;김상종;고영희
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.76-82
    • /
    • 1990
  • In samples taken from mouth of the Nakdong River, mercury-resistant bacteria grown on the media supplemented with over 20 ppm of mercuric chlorice were below 0.3% of all aerobic heterotrophs. Among them, seven strains grown over 100 ppm of mercuric chloride were isolated and all were identified as Pseudomonas. The toxic effect of mercury on the growth of the most resistant strain N14 was influenced by the organic compounds and concentration. The growth and physiological activity to N14 strain were affected by toxic mercury in the early stage: The viable count and glucose turn over rate of N14 strain dropped to the lowest level as soon as the bacteria came into contact with mercury. During the extended lag period, however, bacteria accommodated to the stress and the viable count and glucose turnover rate increased. After the lag period, bacteria began to proliferate and their growth reached similar level to that of control. In crude extracts of N14 strain grown in nutrient browth containing. $10{\mu}M$ $HgCl_{2}$, a mercuric ion dependent oxidation of NADPH was demonstrated. Therefore the mechanism of mercury-resistance of the N14 strain involved the elimination of the mercury from growth media. In the N14 strain which a wide range of resistance to antibiotics was observed in, four multiple plasmids were detected. As a result, the supposition that N14 strain has a plasmid-encoded enzyme system may be quite within the realms of possobility.

  • PDF

Isolation and Characterization of Pseudomonas sp. KM10, a Cadmium- and Mercury-resistant, and Phenol-degrading Bacterium

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.388-398
    • /
    • 1998
  • A bacterium which is resistant to both mercury and cadmium, and also capable of utilizing phenol as a carbon and energy source, was isolated from the Kumho River sediments near Kangchang Bridge, Taegu, Korea. The isolate was labeled Pseudomonas sp. KM10 and characterized. The bacteria grew in 4 mM $CdCl_2$and in $70{\mu}M$ $HgCl_2$. The bacteria efficiently removed over 90% of 1 g/l phenol within 30 h. In the presence of 1.250 g/l phenol, the growth of the microorganism was slightly retarded and the microorganism could not tolerate 1.5 g/l phenol. Curing of plasmid from the bacteria was carried out to generate a plasmidless strain. Subsequent experiments localized the genes for phenol degradation in plasmid and the genes for mercury resistance and cadmium resistance on the chromosome. Dot hybridization and Southern hybridization under low stringent conditions were performed to identify the DNA homology. These results showed significant homologies between the some sequence of the chromosome of Pseudomonas sp. KM10 and merR of Shigella flexneri R 100, and between the some sequence of the chromosome of Pseudomonas sp. KM10 and cadA of Staphylococcus aureus pI258. The mechanism of cadmium resistance was efflux, similar to that of S. aureus pI258 cadA, and the mechanism of mercury resistance was volatilization, similar to that of S. flexneri R100 mer.

  • PDF

Expression and Purification of Transmembrane Protein MerE from Mercury-Resistant Bacillus cereus

  • Amin, Aatif;Sarwar, Arslan;Saleem, Mushtaq A.;Latif, Zakia;Opella, Stanley J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • Mercury-resistant ($Hg^R$) bacteria were isolated from heavy metal polluted wastewater and soil collected near to tanneries of district Kasur, Pakistan. Bacterial isolates AZ-1, AZ-2 and AZ-3 showed resistance up to $40{\mu}g/ml$ against mercuric chloride ($HgCl_2$). 16S rDNA ribotyping and phylogenetic analysis were performed for the characterization of selected isolates as Bacillus sp. AZ-1 (KT270477), Bacillus cereus AZ-2 (KT270478) and Bacillus cereus AZ-3 (KT270479). Phylogenetic relationship on the basis of merA nucleotide sequence confirmed 51-100% homology with the corresponding region of the merA gene of already reported mercury-resistant Gram-positive bacteria. The merE gene involved in the transportation of elemental mercury ($Hg^0$) via cell membrane was cloned for the first time into pHLV vector and transformed in overexpressed C43(DE3) E. coli cells. The recombinant plasmid (pHLMerE) was expressed and the native MerE protein was obtained after thrombin cleavage by size exclusion chromatography (SEC). The purification of fusion/recombinant and native protein MerE by Ni-NTA column, dialysis and fast protein liquid chromatography (FPLC/SEC) involved unfolding/refolding techniques. A small-scale reservoir of wastewater containing $30{\mu}g/ml$ of $HgCl_2$ was designed to check the detoxification ability of selected strains. It resulted in 83% detoxification of mercury by B. cereus AZ-2 and B. cereus AZ-3, and 76% detoxification by Bacillus sp. AZ-1 respectively (p < 0.05).

Isolation and Characterization of Antibiotic and Heavy Metal-Resistant Pseudomonas aeruginosa from Different Polluted Waters in Sohag District, Egypt

  • Soltan, El-Sayed.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2001
  • Different polluted water samples were collected from a wastewater treatment plant, agricultural drainage canals, the River Nile, and irrigation canals. The samples were examined for the enumeration of Pseudomonas aeruginosa in the Sohag area, Egypt over a period of one year. A total of 240 isolates were collected and tested for their resistance to 12 common antibiotics and 6 heavy metals. The isolates were found to be less resistant to norfloxacin(1.7%), ofloxacin(4.6%), amikacin(9.6%), tobramycin (10.4), carbenicillin (15.4), and gentamycin (41.3%), yet more sensitive to rifampicin (75%), kanamycin (89.6%), ampicillin (90.8%), chloramphenicol (91.7%), streptomycin (92.9%), and tetracyclin(96.3%). In contrast, 7.1%, 12.9%, 25.4%, and 53.7% of the isolates were resistant to lead, cadmium, mercury, and zinc, respectively. None of the isolates had developed a resistance to silver or molybdenum. The high frequency of metal-antibiotic double resistance existed between lead and amikacin (56.5%), cadmium and ofloxacin (72.7%), zinc and norfloxacin (100%), and mercury and carbenicillin (94.6%). The high occurrence of antibiotic-resistant bacteria in natural water could be related to the widespread use of antibiotics, with possible public health hazard.

  • PDF

METAL ION RESISTANCE OF THE BACTERIOCIN PRODUCING ENTEROCOCCI

  • Laukova, A.;Kmet, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.441-445
    • /
    • 1993
  • Ten bacteriocin-producing Enterococcus faecium strains with urease activity ($1.10-6.2nkat.mL^{-1}$) were isolated from the rumen of 2-8 weeks old calves. All strains were resistant aginst disodium arsenate at a minimal inhibition concentration - MIC $5g.L^{-1}$ and mercury chloride ($MIC=10-20mg.L^{-1}$). Eight strains were resistant against silver nitrate ($MIC=40-50mg.L^{-1}$) and three against antibiotics used. The resistance against six antibiotics was found in A23 strain. Values of adherence index ranged from 5.02 to 20.4 enterococci adhered per one epithelial cell of rumen wall. All isolates produced bacteriocins which inhibited the growth at least of one of five indicator organisms. The EF1 strain with a good affinity to the epithelial cell ($15.2{\pm}1.2$) produced bacteriocin substance with antimicrobial activity against grampositive and gramnegative indicator bacteria.

Distribution of Heavy Metals and Hydrocarbons Resistant Bacteria at Pohang Area (포항지역의 중금속과 탄화수소 내성균 분포)

  • 김갑정;이인수;박경량
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.339-347
    • /
    • 1998
  • As a part of a study on the development of microbiological methods for petroleum exploration, the distribution of the avarafe survival rate for heterotrophs to various heavy metal ions and hydrocarbons were surveyed and compared by the use of plate count method. In consequence of the avarage survival rate to heavy metal ions(2 hours treatment) and hydrocarbons(1 hour treatment) for heterotrophs isolatinf from soil samples(50cm depth) which located in Doum mountain(A, B and D site) and Aedowon(C site) at Pohang area, the survival rate of heterotrophs for nickel(600ppm), cobalt(500ppm), cadmiun(100ppm), mercury(20ppm), zinc(400 ppm) and lead(500ppm) were 73.7%, 82.6%, 76.8%, 9.5%, 77.8% and 73.6% at A site and 67.9%, 82.5%, 86.0%, 5.8%, 82.5% and 91.7% at B site, 87.8%, 79.8%, 87.5%, 7.0%, 84.2% AND 47.7% AT c SITE, AND 71.8%, 76%, 85.9%, 1,2%, 79.6% AND 88.3% AT D site, respectively. Also the survival rate of heterotrophs from A,B,C and D site to pentane and hexane(each concentration is 20%) were 26.7% and 42.5%, 11.8% and 8.1%, 44.3% and 36.2%, and 12% and 3.5%, respectively. therefore, heterotrophs from B and D site that alternated gravelstone, muddy sandstone and sandstone were higher survival rate to the heavy metal ions than heterotrophs from A site which mainly composed gravelstone. Also, heterotrophs from C site which mainly composed muddy sandstone and once produced natural gas were showed relatively higher survival rate to the heavy metal ions and hydrocarbons than the other sites. Consequently, we confirmed that the distributions of tolerant heterotrophs to heavy metal ions and hydrocarbons were differ from the lithological compositon.

  • PDF