• Title/Summary/Keyword: memphis

Search Result 52, Processing Time 0.017 seconds

Synoptic Analysis of Heavy Rainstorms over Urban Areas in the Southern United States (미국 남부지방 도시호우의 종관적 분석)

  • Youngeun Choi
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.3
    • /
    • pp.395-409
    • /
    • 1998
  • The purpose of this paper is to determine the atmospheric conditions in whih urban areas affect the precipitation processes and to evaluate whether certain weather types show more apparent urban effect on precipitation modification over five cities in the southem United States. Each heavy rainstorm is classified into one of three synoptic weather types (frontal storm, airmass storm or tropical disturbance storm). Heavy rainstorm day is defined as day producing rainfall totals that equal o exceed 2 inches (50.08 mm). Houston, Dallass and San Antonio show possible urban effects on rainfall totals and frequencies of heavy rainstorms by airmass storm type while New Orleans and Memphis do not reveal any distinct precipitation enhancements through the synoptic analysis. The results of TSA (Trend Surface Analysis) show that frontal and tropical disturbance storm types have stronger climatic gradients than airmass types and the patterns of rainfall totals have stronger trends than those of rainfall frequencies for the five cities. The results suggest that airmass type events may well reveal possible precipitation enhancements due to urban effects since they are less influenced by a strong climate gradient and they provide favorable conditions for development of urban heat islands. Residual analysis confirms that rainfall totals and frequencies of heavy rainstorms by airmass storm type have positive residuals over the city or the major effect area.

  • PDF

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.