• Title/Summary/Keyword: membrane-coating

Search Result 362, Processing Time 0.026 seconds

Preparation and Dissolution Characteristics of A Gastro-Retentive Tablet System Containing Gabapentin (가바펜틴을 함유한 위체류성 정제의 제조 및 용출 평가)

  • You, Kwang-Hee;Lee, Pung-Sok;Oh, Eui-Chaul
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • The objective of this investigation was to develop a gastro-retentive(GR) dosage form of gabapentin and was to evaluate of its dissolution characteristics. GR tablet consists of expandable core tablet matrix and semi-permeable membrane coating. Poloxamer 407 and sodium bicarbonate were used to prepare the core matrix. Polyvinly acetate dispersion (Kollicoat $SR30D^{(R)}$) and polyvinyl alcohol-polyethylene glycol copolymer ((Kollicoat $IR^{(R)}$)) were employed to form the semi-permeable membrane. The GR tablets significantly expanded up to fivefold in simulated gastrointestinal fluids with no apparent damage of the coating membrane over 12 hours. Also, the swelling rate was controllable with the amount of sodium bicarbonate. The drug release was observed to be substantially sustained based on coating level. The release rate of gabapentin from the GR tablet was gradually slowed down as the coasting amount was increased. The gabapentin GR tablet with 8% coating level showed a pseudo-zero order release kinetics over 12 hours. These results suggest that this swellable GR tablet system having semi-permeable membrane coating can be applicable for hydrophilic drug substances like gabapentin.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Deposition of an Intermediate Layer on an Ultrapermeable Ceramic Support by Evaporation-Driven Self-Assembly (증발유도 자기조립을 이용한 고투과도 세라믹 지지체의 중간층 제조)

  • Kwon, Hyuk Taek;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • In this study, we developed an evaporation-driven self-assembly coating method for an ceramic intermediate layer on an ultrapermeable ��-Al2O3 support with large pore size of ~1.5 ㎛. The method led to the formation of a ceramic intermediate layer with higher surface homogeneity and less surface roughness than the conventional dip-coating method. A mesoporous ��-Al2O3 layer was deposited on the support to evaluate support quality. A supported ��-Al2O3 membrane was defect-free even without repeated coating. Furthermore, the membrane showed 2.3 times higher nitrogen permeance than one prepared on a macroporous support with pore size range of 100~200 nm, which is widely used for ceramic membrane coating.

Modified membrane with antibacterial properties

  • Aryanti, P.T.P.;Sianipar, M.;Zunita, M.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.463-481
    • /
    • 2017
  • Bacteria have been considered as a major foulant that initiates the formation of biofilm on the polymeric membrane surface. Some polymeric membranes are naturally antibacterial and have low fouling properties, however, numerous efforts have been devoted to improve their antibacterial performance. These modifications are mostly carried out through blending the membrane with an antibacterial agent or introducing the antibacterial agent on the membrane surface by chemical grafting. Currently, a significant number of researches have reported nanocomposite membrane as a new approach to fabricate an excellent antibacterial membrane. The antibacterial nanoparticles are dispersed homogenously in membrane structure by blending method or coating onto the membrane surface. Aim of the modifications is to prevent the initial attachment of bacteria to membrane surface and kill bacteria when attached on the membrane surface. In this paper, several studies on antibacterial modified membranes, particularly for water treatment, will be reviewed comprehensively. Special attention will be given on polymeric membrane modifications by introducing antibacterial agents through different methods, such as blending, grafting, and coating.

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-I - Preparation and pharmaceutical evaluation of controlled release acetaminophen tablets-

  • Shim, Chang-Koo;Kim, Ki-Man;Kim, Young-Il;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1990
  • In order to develop a controlled-release oral drug delivery system (DDS) which sustains the plasma acetaminophen (AAP) concentration for a certain period of time, microporous membrane-coated tablets were prepared and evaluated in vitro. Firstly, highly water-soluble core tablet of AAP were prepared with various formulations by wet granulation and compression technique. Then the core tablets were coated with polyvinychloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of core tablets and coating suspensions on the pharmaceutical characteristics such as drug release kinetics and membrane stability of the coated tablets was investigated in vitro. AAP was released from the coated tablets as a zero-order rate in a pH-independent manner. This independency of AAP release to pH change from 1.2 to 7.2 is favorable for the controlled oral drug delivery, since it will produce a constant drug release in the stomach and intestine regardless of the pH change in the GI tract. Drug release could be extended upto 10 h according to the coating condition. The release rate could be controlled by changing the formula compositions of the core tablets and coating suspensions, coat weight per each tablet, and especially PVC/sucrose ratio and particle size of the sucrose in the coating suspension. The coated tablets prepared in this study had a fairly good pharmaceutical characteristics in vitro, however, overall evaluation of the coated tablet should await in vivo absorption study in man.

  • PDF

Hydrophilization of hydrophobic membrane surfaces for the enhancement of water flux via adsorption of water-soluble polymers

  • Kim, Ka Young;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.101-113
    • /
    • 2016
  • In this study, to improve the water flux of porous hydrophobic membranes, various water-soluble polymers including neutral, cationic and anionic polymers were adsorbed using 'salting-out' method. The adsorbed hydrophobic membrane surfaces were characterized mainly via the measurements of contact angles and scanning electron microscopy (SEM) images. To enhance the durability of the modified membranes, the water-soluble polymers such poly(vinyl alcohol) (PVA) were crosslinked with glutaraldehyde (GA) and found to be resistant for more than 2 months in vigorously stirred water. The water flux was much more increased when the ionic polymers used as the coating materials rather than the neutral polymer and in this case, about 70% of $0.31L/m^2{\cdot}h$ (LMH) to 0.50 LMH was increased when 300 mg/L of polyacrylamide (PAAm) was used as the coating agents. Among the cationic coating polymers such as poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA), poly(acrylic acid-comaleic acid) (PAM) and poly(acrylic acid) (PAA), PSSA_MA was found to be the best in terms of contact angle and water flux. In the case of PSSA_MA, the water flux was enhanced about 80%. The low concentration of the coating solution was better to hydrophilize while the high concentration inclined to block the pores on the membrane surfaces. The best coating condition was found: (1) coating concentration 150 to 300 mg/L, (2) ionic strength 0.15, (3) coating time 20 min.

Studies on Preparation and Performance of Poly(acrylonitrile) Nano-composite Hollow Fiber Membrane through the Coating of Hydrophilic Polymers (친수성 고분자의 코팅을 통한 Poly(acrylonitrile) 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • In this study, a selective layer of poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) was formed by layer-by-layer method onto a porous polyacrylonitrile (PAN) hollow fiber membrane as the suppoter membrane. The salting out method was used by adding Mg salt to the coating solution. Several experimental conditions of the ionic strength, polymer concentration, and coating time were investigated, and the flux and rejection were measured at the operating pressure of 2 atm for 100 mg/L of NaCl, $MgCl_2$, and $CaSO_4$ as the feed solution. The membranes coated with PSSA 20,000 ppm, coating time 3 minutes, ionic strength 1.0, PEI 30,000 ppm, coating time 1 minute, and ionic strength 0.1 were observed the best. In the 100 ppm NaCl, $MgCl_2$, and $CaSO_4$ feed solutions, the flux of 20.4, 19.4, and 18.7 LMH, and the rejection of 67, 90, and 66.6%, respectively.

Membrane for the Removal of Volatile Organic Compounds from Air (대기중의 휘발성 유기물 제거용 분리막)

  • Deng, S.;Lang, K.;Wang, J.;Tremblay, A.;Matsuura, T.
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.22-30
    • /
    • 1997
  • Porous asymmetric membranes were prepared from polyetherimide polymer by the phase-inversion technique under different conditions. The performance of the membranes was tested for the removal of acetone vapour from nitrogen. A membrane which showed a high acetone permeability and a high selectivity was chosen and tested further for the separation of different organic vapours from nitrogen. The molecular structure of organic vapours and the selectivity were correlated. A strong correlation was also found between the chromatographic retention time of the organic vapour and the selectivity. These experimental results led to the conclusion that the sorption is the factor governing the separation of volatile organic compounds from nitrogen. A membrane was also prepared by coating the surface of a porous polyetherimide membrane with silicone rubber. The performance of membranes with and without silicone rubber coating was compared.

  • PDF

Salt damage resistance of mortar substrate coated by the urethane and acrylic waterproofing membranes (우레탄계와 아크릴계 도막 방수재가 도포된 바탕 모르타르의 염해 저항성 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Miyauchi, Kaori;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.329-331
    • /
    • 2013
  • The salt damage resistance of waterproofing membrane was evaluated on the cracked mortar substrate. The types of specimens are urethane, acrylic waterproofing membrane, and no coating mortar substrate. After these specimens were cured by water curing for 4 weeks, they were cured by atmospheric curing at 20±2Co for 8 weeks. The salt water immersion test was carried out by following KS F 2737, and the penetration depth of chloride ion into substrate was measured in 1, 4, 8, and 13 weeks. As a result, in the case of non coating specimen, the chloride ion penetrated within one week. In the coated specimens, a regardless of the membrane type, the chloride ion did not penetrate during 13 weeks-tests on condition that the cracked width of substrate is less than 0.3mm. Also, the penetration speeds of the coated specimens were lower than that of non coating specimen. Therefore, our results reached a conclusion that waterproofing membrane has high salt damage resistance.

  • PDF

Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation (열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가)

  • Im, Kwang Seop;Lee, Jeong Woo;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.362-376
    • /
    • 2019
  • In this study, hydrophilic coating characteristics of PVDF [poly(vinylidene fluoride)] hollow fiber membranes with flower type cross-section prepared by thermally induced phase separation were studied. The hollow fiber used in this study was provided from PureEnvitech Co. Ltd., and the hydrophilic coating experiment was performed with different concentration and number of coating of PEBAX 1657, 2533 and 3533 block copolymer solution using a dip coating method. The hydrophilic coated hollow fiber membrane was characterized to scanning microscope and contact angle measurements to determine the degree of hydrophilization. As a result of SEM characterization, it was confirmed that the thickness of the coating layer increased as the coating concentration increased and the number of coatings increased. Contact angle of surface of hollow fibers decreased as the concentration of the coating solution increased and the number of coatings increased. Gas permeance of oxygen gas was measured for the application of the hydrophilized hollow fiber to Membrane Areated Biofilm Reactor. As a result of gas permeation test, it was confirmed that gas permeance decreased with increasing coating concentration and number of coatings, and the more hydrophilized hollow fiber coated with PEBAX 1657 showed lower gas permeance than those coated with PEBAX 2533 and 3533.