• Title/Summary/Keyword: membrane-active mechanism

Search Result 70, Processing Time 0.03 seconds

Cochlear Model Analysis for Active Element (능동적 요소를 고려한 코클리어 모델 해석)

  • 최두일;윤태성
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.111-116
    • /
    • 1987
  • In this study, basilar membrane motions and neural tuning responses are analysed with I-dimensional equations for cochlear fluid mechanics and an active cochlear model. The results are as follows. (1) The differences between basilar membrane motions in an active cochlear model and in an passive cochlear model are explained. (2) The basilar membrane motion curves and the neur'at tuning curves which are in accordance with physiological measurements ave obtained. (3) It is proved that the active mechanism makes cochlear highly frequency sensitive.

  • PDF

A Novel Antifungal Analog Peptide Derived from Protaetiamycine

  • Lee, Juneyoung;Hong, Hyun Joo;Kim, Jin-Kyoung;Hwang, Jae-Sam;Kim, Yangmee;Lee, Dong Gun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.473-477
    • /
    • 2009
  • Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2. A PI influx assay confirmed the effects of the analog peptides and demonstrated that the peptides exerted their activity by a membrane-active mechanism, in an energy-independent manner. As the noteworthy potency of 9Pbw4, the mechanism(s) of 9Pbw4 were further investigated. The membrane studies, using rhodamine-labeled giant unilamellar vesicle (GUV) and fluorescein isothiocyanate (FITC)-dextran loaded liposome, suggested that the membrane-active mechanism of 9Pbw4 could have originated from the pore-forming action and the radii of pores was presumed to be anywhere from 1.8 nm to 3.3 nm. These results were confirmed by 3D-flow cytometric contour-plot analysis. The present study suggests a potential of 9Pbw4 as a novel antifungal peptide.

The Concentration of Magnolia Aroma Model Solution Using Pervaporation and Preparation of PVDF/PDMS Composite Membranes (투과증발법을 이용한 Magnolia Aroma 모델액의 농축 및 PVDF/PDMS 복합막의 제조)

  • Lee, Yong-Taek;Park, Joong-Won;Shin, Dong-Ho
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2007
  • This is the research about the concentration of trace Magnolia flavor components in water by pervaporation. We have investigated the change of selectivity depending on support membrane structure and active layer thickness using prepared PVDF/PDMS composite membrane. Through the pure water flux test for PVDF support membrane, we could indirectly confirm that as the coagulation temperature decreases and the polymer concentration increases, the surface porosity and pore diameter decreases. Appling these results to transport mechanism, we could explain the effect of support membrane structure for the composite membrane. The selectivity increases as the thickness of PDMS active layer increases. We could know that there is a limitation to describe the transport on the active layer by Fick's law through these results.

Prediction of Intrinsic Pore Properties of Ultrafiltration Membrane by Solute Rejection Curves (용질배제 곡선에 의한 한외여과 막의 세공특성 예측)

  • 염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.4-8
    • /
    • 1991
  • The characterization of pore properties (mean pore size and pore size distribution) of the active layer in a UF membrane is important not only in order to obtain information about the factors affecting pore formation during membrane manufacturing but also to understand deeply the mechanism of solute and solvent transport through pores. Many methods of characterizing quantitatively the pore properties of UF membranes have been suggested in the literature: solvent and gas flow measurement, bubble point determination, electron microscopy, gas adsorption/desorption measurement, rejection measurement etc. But most of these methods involve time-consuming procedures and involve some wellknown problems and uncertainties.

  • PDF

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Active Transport of Anions through Synthesized Polymer Membrane with Pyridine as Fixed Carrier (피리딘 고정전달자를 함유한 합성 고분자막을 통한 음이온의 능동전달)

  • 이용현;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.241-247
    • /
    • 1991
  • The Poly (4-vinyipyridine-co-styrene) membrane containing Pyridine as fixed carrier was synthesized and characterized. And the active transport mechanism of Cl- and $CCl_3COO^-$ with changing concentration of $H^+$ and $OH^-$ was investigated. $CCl_3COO^-$ was transported not only by a symport mechanism with $H^+$ transfer but also by an antiport mechanism with $OH^-$transfer, while $Cl^-$ was transported only by a symport mechanism with $H^+$ transfer. Observing the initial flux of anions, salt formation constant between ions and membrane (K), and diffusion coefficient in membrane (D) were calculated as follows: for $Cl^-, \;K=4.60{\times}10^2\;mol^{-1}{\cdot}\textrm{cm}^3, \;D=1.57{\times}10^{-3}{\textrm{cm}^2/h$ and for $CCl_3COO^-, \;K=1.l0{\times}10^4\;mol^{-1}{\cdot}\textrm{cm}^3, \;D=1.14{\times}10^{-4}{\textrm{cm}^2}/h$.

  • PDF

Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis

  • Lee, Juneyoung;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.759-764
    • /
    • 2015
  • Antimicrobial peptides (AMPs) are one of the critical components in host innate immune responses to imbalanced and invading microbial pathogens. Although the antimicrobial activity and mechanism of action have been thoroughly investigated for decades, the exact biological properties of AMPs are still elusive. Most AMPs generally exert the antimicrobial effect by targeting the microbial membrane, such as barrel stave, toroidal, and carpet mechanisms. Thus, the mode of action in model membranes and the discrimination of AMPs to discrepant lipid compositions between mammalian cells and microbial pathogens (cell selectivity) have been studied intensively. However, the latest reports suggest that not only AMPs recently isolated but also well-known membrane-disruptive AMPs play a role in intracellular killing, such as apoptosis induction. In this mini-review, we will review some representative AMPs and their antimicrobial mechanisms and provide new insights into the dual mechanism of AMPs.

The Uptake of Solvent in Polymeric Thin Membranes By a Relaxation-Sorption Coupled Mechanism

  • Song, Kyu-Min;Hong, Won-Hi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.43-44
    • /
    • 1995
  • The diffusion behavior of liquid into polymer has been described by Fick's law, but the departure from Fickian diffusion is frequently found. In this study, 'noble' expressions for the rates of relaxation and sorption are introduced to eliminate these limitations. The ralaxation-sorption coupled mechanism model are based on the possibility of contacting liquid molecule and the active site which has the numerical concept of free volume. The concept has an analogy of reaction rate expressed by the possibility of collision with molecules and used in adsorption and reactive extraction etc. The new model simulated by Rungc-Kutta method for initial-value problem and Fickian diffusion is caompared with experimental data. The results show that the ralaxation-sorption coupled mechanism is able to account well for Fickian and non-Fickian sorption behavior including sigmoid and two-stage. In addition, this model has a chance of expansion to multi-component sorption with ease.

  • PDF

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

PARTIAL OXIDATION OF PROPANE ON NAFION SUPPORTED CATALYTIC MEMBRANE

  • F. Frusteri;C. Espro;F. Arena;F. Arena;E. Passalacqua;A.Patti;A. Parmaliana
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.55-58
    • /
    • 1999
  • Nafion supported catalytic membranes were found to be active, stable and selective in th partial oxidation of propane to oxygenates with H2O2 under mild condition. Addition of Fe2+ in liquid phase enhances the reaction rate. Reaction proceeds according to a radical mechanism based on th electrophilic activation of propane on superacid sites and subsequent reaction of the activated paraffin with OH radicals. The use of a catalytic membrane, which allow separation of the intermediate products from the liquid phase containing the oxidant, was found to be effective to perform selective partial oxidation of propane with high yields to oxygenated products.