• 제목/요약/키워드: membrane water treatment process

검색결과 476건 처리시간 0.03초

분말활성탄(PAC)+막여과(MF) 조합공정에서 PAC의 영향 평가 (Assesment of Powdered Activated Carbon Effect on PAC+MF Hybrid Membrane Process)

  • 김병수;왕창근;임재림;김충환
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.517-522
    • /
    • 2008
  • This study aims at an assessment of the effectiveness of taste & odor removal and transmembrane pressure changes in a pilot membrane plant(500m3/day) by adding PAC to MF process, and at providing a basis for applying it to the advanced water treatment process. The transmembrane pressure showed, in low turbidity of raw water, a tendency to decrease when PAC was injected at the Flux of 1, $1.5m^3/m^2{\cdot}d$, while it increased in high Flux($1.5m^3/m^2{\cdot}d$) in high turbidity of raw water. in addtion, it is shown that the fouling could be reduced more when PAC is injected together with appropriate amount of coagulant, than when PAC is solely injected. Taste & Odor-causing 2-MIB may not be detected in membrane filtered water, if the amount of PAC injection is increased in accordance with the increasing concentration of 2-MIB. Hence, PAC injection, as a pre-treatment process in MF membrane filtering, is supposed to be a suitable process for reducing fouling as well as for improvement effectiveness of taste & odor treatment.

광촉매 및 다채널 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 유기물의 영향 (Advanced Water Treatment by Hybrid Process of Multi-channel Ceramic MF and Photocatalyst: Effect of Organic Materials)

  • 볼러 암말사나;박진용
    • 멤브레인
    • /
    • 제21권4호
    • /
    • pp.351-359
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid process that was composed of photocatalyst packing in space of between outside of multi-channel ceramic microfiltration membrane and membrane module inside. Photocatalyst was polypropylene (PP) beads coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, standard NOM solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) increased and J decreased as concentration of humic acid changed from 2 mg/L to 10 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiency of turbidity and $UV_{254}$ absorbance were above 96.4% and 78.9%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in (MF), (MF + $TiO_2$), (MF + $TiO_2$ + UV) processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of $UV_{254}$ absorbance by adsorption (MF + $TiO_2$) and photo-oxidation (MF + $TiO_2$ + UV) at humic acid of 4 mg/L and 6 mg/L were above 9.0, 9.5 and 8.1, 10.9%, respectively.

에너지절약형 VSA MF Membrane 수처리 시스템 (Effective Water Treatment Process by Hollow Fiber MF Membranes; VAS(Vibrating & Stripping by Air ) Process)

  • 김정학
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 Energy Saving Membrane Separtion Systems 에너지 절약형 막분리 시스템
    • /
    • pp.93-116
    • /
    • 1999
  • MF membrane element was specially designed for water purification and VSA process which can solve the fouling problem. Especially VSA process is developed for the SK Chemicals' asymmetric microfiltration hollow fiber membranes. In case of outside-to-in filtration process, MF membrane element showed the excellent flux stability caused by cleaning ability of VSA process . Simultaneous back-washing with VSA consideratbly enhances cleaning efficiency. From the result the possibility of the replacement of chemical coagulation and sand filtration process with newly developed VSA process was revealed.

  • PDF

EFFECTIVE WATER TREATMENT PROCESS BY HOLLOW FIBER MEMBRANES : VAS (VIBRATING & STRIPPING BY AIR) PROCESS

  • Kim, Jeong-Hak
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 The 7th Summer Workshop of the Membrane Society of Korea
    • /
    • pp.63-66
    • /
    • 1999
  • MF membrane element was specially designed for water purification and VSA process which can solve the fouling problem. Especially VSA process is developed for the SK Chemical's asymmetric microfiltration hollow fiber membranes. In case of outside-to-in filtration process, MF membrane element showed the excellent flux stability caused by cleaning ability of VSA process. Simultaneous back- washing with VSA considerably enhances cleaning efficiency. Form the result, the possibility of the replacement of chemical coagulation and sand filtration process with newly developed VSA process was revealed.

  • PDF

Recent Progress in Surface Science and Its Application in Advanced Water Treatment by Membrane Processes

  • Matsuura, Takeshi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 제5회 하계 Workshop (97 한,카 국제공동 Workshop, 고도 수처리를 위한 막분리 공정)
    • /
    • pp.21-35
    • /
    • 1997
  • As environmental regulations become more stringent, water, used either as drinking water or as industrial process water, becomes increasingly better in its quality. As a result, an increasingly more advanced water treatment technology is required. It is believed that membrane technology will be able to satisfy such a requirement. The heart of the membrane technology is membrane. The advancement in water treatment technology using membranes, therefore, depends on the development of novel membranes which are superior in performance to the currently available membranes. In this paper, a brief review will be made how the recent progress in surface science, such as surface modification and surface characterization, has aided to improve the performance of the membranes used for water treatment. Some suggestions will also be made regarding the future direction of the research in this area.

  • PDF

정밀여과에 의한 하수고도처리수의 재이용을 위한 전처리법에 관한 연구 (A Study on the Pretreatment Process for Sewage Reuse by Microfiltration Process)

  • 국영롱;주재영;배윤선;이혜인;정인호;박철휘
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.595-601
    • /
    • 2010
  • It is evident that Korea will continue its battle with water shortage and alternative program are being taken into action. One of the main actions is reusing 1,800 tons of effluent of 357 sewage treatment plant located nationwide. Therefore this study supplemented ozone oxidation methods that would increase the efficiency of organic oxidation and coagulation. Through this method, fouling will be controled sufficiently by preventing membrane process in the system for advanced sewage treatment. In this study, ozone-coagulation-microfiltration membrane were used. The final removal efficiency of the pretreated water from the result of the ozone-coagulation were 50% of CODcr, 38% of TP and 11% of TOC respectively. Water quality treatment has decreased about 80% for TP. Ozone-coagulation-microfiltration membrane maintains the high flux while decreasing the number of organic matter and the membrane fouling, and reducing the TP. As a result, in order to reuse the water from the sewage, the ozone-coagulation-microfiltration membrane type must be considered in order to achieve the best efficiency.

중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구 (Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse)

  • 이종훈;노호정;박광덕;우윤철
    • 한국물환경학회지
    • /
    • 제37권6호
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.

탄소섬유 정밀여과막 및 광촉매 혼성 수처리 공정에서 물 역세척 조건의 영향 (Effect of Water Back-flushing Condition in Hybrid Water Treatment Process of Carbon Fiber Microfiltration Membrane and Photocatalyst)

  • 박진용;조광희
    • 멤브레인
    • /
    • 제22권3호
    • /
    • pp.216-223
    • /
    • 2012
  • 본 연구에서는 정수처리용 탄소섬유 정밀여과막 및 광촉매의 혼성공정에서 물 역세척 주기(FT) 변화의 영향을 알아보고, 알루미나 한외여과막을 사용한 기존의 결과와 비교하였다. 물 역세척 시간(BT)는 10초로 고정한 채, FT를 2~10분으로 변화시키면서, 그 영향을 180분 운전 후 막오염에 의한 저항($R_f$), 투과선속(J)과 총여과부피($V_T$) 측면에서 고찰하였다. FT가 감소할수록, $R_f$는 감소하고 J는 증가하여 알루미나 한외여과막을 사용한 기존의 결과와 동일하였다. 탁도의 처리효율은 99.2% 이상으로 높게 나타났으며, FT 변화에 의한 영향이 보이지 않아 기존의 결과와는 달랐다. 한편, 유기물의 처리효율은 NBF 조건에서 65.6%로 가장 낮았으며 FT가 감소할수록 증가하여 기존의 결과와 역시 다른 현상을 보였다. 이런 차이를 보인 것은 세라믹 분리막의 재질의 차이로 인한 막오염 현상이 다른 기작을 보이기 때문인 것으로 판단된다.

시흥정수장 막여과시설 시범운영 (A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant)

  • 김한승;김충환;김학철;윤재경;안효원
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Workshop
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF

막여과 정수처리 공정에서 온도보정차압 식의 파울링 지표로서의 활용성 검토 (Applicability of Temperature Correction Trans-membrane Pressure as a Fouling Index of Membrane Water Treatment Process)

  • 김민재;임재림;이경혁;이영주;김수한
    • 상하수도학회지
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Temperature correction trans-membrane pressure (TC-TMP) is frequently used as a fouling index in membrane water treatment plants. TC-TMP equation is derived based on an assumption that the total membrane resistance (i.e. the sum of the intrinsic membrane resistance and fouling resistance) is not affected by temperature. This work verified the validity of this assumption using microfiltration (MF) and ultrafiltration (UF) membranes with and without fouling. The foulants used in the work were kaolin (inorganic) and humic acid (organic). The intrinsic resistances of MF and UF membranes remains at constant values regardless of temperature change. When the same amount of foulants were accumulated on the membrane, inorganic fouling resistance with kaolin was constant regardless of temperature change while organic fouling resistance with humic acid decreased at higher temperatures, which means that TC-TMP cannot be used as a fouling index when organic fouling occurs in a real field application. Since TC-TMP underestimates the amount of fouling at higher temperatures, more attention should be necessary in the operation of membrane water treatment plant in a hotter season like summer.