• Title/Summary/Keyword: membrane targeting

Search Result 112, Processing Time 0.025 seconds

Synergistic anticancer activity of resveratrol in combination with docetaxel in prostate carcinoma cells

  • Lee, Sang-Han;Lee, Yoon-Jin
    • Nutrition Research and Practice
    • /
    • v.15 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The study was conducted to investigate the efficacy of the combination treatment of phytochemical resveratrol and the anticancer drug docetaxel (DTX) on prostate carcinoma LNCaP cells, including factors related to detailed cell death mechanisms. MATERIALS/METHODS: Using 2-dimensional monolayer and 3-dimensional spheroid culture systems, we examined the effects of resveratrol and DTX on cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential, apoptosis, and necroptosis by MTT, flow cytometry, and Western blotting. RESULTS: At concentrations not toxic to normal human prostate epithelial cells, resveratrol effectively decreased the viability of LNCaP cells depending on concentration and time. The combination treatment of resveratrol and DTX exhibited synergistic inhibitory effects on cell growth, demonstrated by an increase in the sub-G0/G1 peak, Annexin V-phycoerythrin positive cell fraction, ROS, mitochondrial dysfunction, and DNA damage response as well as concurrent activation of apoptosis and necroptosis. Apoptosis and necroptosis were rescued by pretreatment with ROS scavenger N-acetylcysteine. CONCLUSIONS: We report resveratrol as an adjuvant drug candidate for improving the outcome of treatment in DTX therapy. Although the underlying mechanisms of necroptosis should be investigated comprehensively, targeting apoptosis and necroptosis simultaneously in the treatment of cancer can be a useful strategy for the development of promising drug candidates.

Long-term depletion of cereblon induces mitochondrial dysfunction in cancer cells

  • Park, Seulki;Kim, Kidae;Haam, Keeok;Ban, Hyun Seung;Kim, Jung-Ae;Park, Byoung Chul;Park, Sung Goo;Kim, Sunhong;Kim, Jeong-Hoon
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.305-310
    • /
    • 2021
  • Cereblon (CRBN) is a multi-functional protein that acts as a substrate receptor of the E3 ligase complex and a molecular chaperone. While CRBN is proposed to function in mitochondria, its specific roles are yet to be established. Here, we showed that knockdown of CRBN triggers oxidative stress and calcium overload in mitochondria, leading to disruption of mitochondrial membrane potential. Notably, long-term CRBN depletion using PROteolysis TArgeting Chimera (PROTAC) induced irreversible mitochondrial dysfunction, resulting in cell death. Our collective findings indicate that CRBN is required for mitochondrial homeostasis in cells.

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

Cytosolic domain regulates the calcium sensitivity and surface expression of BEST1 channels in the HEK293 cells

  • Kwon Woo Kim;Junmo Hwang;Dong-Hyun Kim;Hyungju Park;Hyun-Ho Lim
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • BEST family is a class of Ca2+-activated Cl- channels evolutionary well conserved from bacteria to human. The human BEST paralogs (BEST1-BEST4) share significant amino acid sequence homology in the N-terminal region, which forms the transmembrane helicases and contains the direct calcium-binding site, Ca2+-clasp. But the cytosolic C-terminal region is less conserved in the paralogs. Interestingly, this domain-specific sequence conservation is also found in the BEST1 orthologs. However, the functional role of the C-terminal region in the BEST channels is still poorly understood. Thus, we aimed to understand the functional role of the C-terminal region in the human and mouse BEST1 channels by using electrophysiological recordings. We found that the calcium-dependent activation of BEST1 channels can be modulated by the C-terminal region. The C-terminal deletion hBEST1 reduced the Ca2+-dependent current activation and the hBEST1-mBEST1 chimera showed a significantly reduced calcium sensitivity to hBEST1 in the HEK293 cells. And the C-terminal domain could regulate cellular expression and plasma membrane targeting of BEST1 channels. Our results can provide a basis for understanding the C-terminal roles in the structure-function of BEST family proteins.

Anticancer Activity of Chloroform Fraction of Methanol Extract of Sparassis crispa in Human Cervical Cancer Stem Cells (자궁경부암 줄기세포에 대한 꽃송이버섯 메탄올 추출물의 클로로포름 분획의 항암 활성)

  • Han, Jang Mi;Kim, Sung Min;Kim, Hye Young;Baek, Seung Bae;Jung, Hye Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Sparassis crispa is an edible mushroom that has been widely utilized in Japan and Korea. It has various biological activities, such as anti-hypertensive, anti-allergic, anti-diabetic, anti-inflammatory, anti-angiogenic, and anti-cancer effects. In this study, we investigated the anticancer activity and underlying molecular mechanism of chloroform fraction of methanol extract of S. crispa (CESP) against cervical cancer stem cells (CSCs), which contribute to tumor initiation, recurrence, and resistance to therapy of human cervical cancer. CESP effectively inhibited the proliferation, tumorsphere formation, and migration of HeLa-derived cervical CSCs by promoting apoptosis. In addition, CESP significantly downregulated the expression of key cancer stemness markers, including integrin α6, CD133, CD44, ALDH1A1, Nanog, Oct-4, and Sox-2, in HeLa-derived cervical CSCs. Furthermore, CESP remarkably suppressed in vivo tumor growth of HeLa-derived cervical CSCs in a chick embryo chorioallantoic membrane (CAM) model. Therefore, our findings suggest that CESP has potential as a natural medicine for the prevention and treatment of cervical cancer by targeting CSCs.

Calnexin as a dual-role biomarker: antibody-based diagnosis and therapeutic targeting in lung cancer

  • Soyeon Lim;Youngeun Ha;Boram Lee;Junho Shin;Taiyoun Rhim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.155-160
    • /
    • 2024
  • Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment.

Evaluation of Therapeutic Monitoring of Prostate Cancer (PCa) using [18F]Florastamin, Diagnostic Radiopharmaceutical for PCa: Non-clinical Ex vivo Whole-body Autoradiographic Analysis

  • Min Hwan Kim;Kyongkyu Lee;Hee Seup Kil;Soon Jeong Kwon;Yong Jin Lee;Kyo Chul Lee;Dae Yoon Chi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2023
  • In this study, we evaluated the targeting of prostate cancer (PCa) using [18F]Florastamin in non-clinical study, for the purpose of therapeutic monitoring of [177Lu]Ludotadipep, a therapeutic radiopharmaceutical for PCa, [18F]Florastamin/[177Lu]Ludotadipep was co-administered to a single-individual prostate tumor bearing mouse model, mimicking clinical condition. Considering the difference in half-life of the two isotopes (18F or 177Lu), image scan of whole-body autoradiography was performed at 24 or 48 h after preparation of frozen section, respectively. Then, it was confirmed whether they showed the same targeting efficiency for the area of tumor. A tumor xenograft model was prepared using PSMA-overexpressing PC3-PIP prostate cancer cells. [18F]Florastamin [111 MBq (3 mCi) in 100 µL]/177Lu]Ludotadipep [3.7 MBq (100 µCi) in 100 µL] was co-administered through the tail vein, and 2 hours after administration, the mice were frozen, and after freezing for 24 hours, whole-body cryosection was performed at 24 h after freezing. Image scanning using cryosection was performed after 24 or 48 hours after freezing, respectively. In the scan image after 24 hours, tumor uptake of [18F] Florastamin/[177Lu]Ludotadipep were simultaneously observed specific uptake in the tumor. In the scan image after 48 hours in the same section, signal of 18F was lost by decay of radioisotope, and specific uptake image for [177Lu]Ludotadipep was observed in the tumor. Uptake of [177Lu]Ludotadipep was specific to the same tumor region where [18F]Florastamin/[177Lu]Ludotadipep was uptake. These results suggested that [18F]Florastamin showed the same tumor uptake efficiency to PCa as [177Lu]Ludotadipep, and effective therapeutic monitoring is expected to be enable using [18F]Florastamin during [177Lu]Ludotadipep therapy for PCa.

Dosimetric Analysis of a Phase I Study of PSMA-Targeting Radiopharmaceutical Therapy With [177Lu]Ludotadipep in Patients With Metastatic Castration-Resistant Prostate Cancer

  • Seunggyun Ha;Joo Hyun O;Chansoo Park;Sun Ha Boo;Ie Ryung Yoo;Hyong Woo Moon;Dae Yoon Chi;Ji Youl Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2024
  • Objective: 177Lutetium [Lu] Ludotadipep is a novel prostate-specific membrane antigen targeting therapeutic agent with an albumin motif added to increase uptake in the tumors. We assessed the biodistribution and dosimetry of [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer (mCRPC). Materials and Methods: Data from 25 patients (median age, 73 years; range, 60-90) with mCRPC from a phase I study with activity escalation design of single administration of [177Lu]Ludotadipep (1.85, 2.78, 3.70, 4.63, and 5.55 GBq) were assessed. Activity in the salivary glands, lungs, liver, kidneys, and spleen was estimated from whole-body scan and abdominal SPECT/CT images acquired at 2, 24, 48, 72, and 168 h after administration of [177Lu]Ludotadipep. Red marrow activity was calculated from blood samples obtained at 3, 10, 30, 60, and 180 min, and at 24, 48, and 72 h after administration. Organand tumor-based absorbed dose calculations were performed using IDAC-Dose 2.1. Results: Absorbed dose coefficient (mean ± standard deviation) of normal organs was 1.17 ± 0.81 Gy/GBq for salivary glands, 0.05 ± 0.02 Gy/GBq for lungs, 0.14 ± 0.06 Gy/GBq for liver, 0.77 ± 0.28 Gy/GBq for kidneys, 0.12 ± 0.06 Gy/GBq for spleen, and 0.07 ± 0.02 Gy/GBq for red marrow. The absorbed dose coefficient of the tumors was 10.43 ± 7.77 Gy/GBq. Conclusion: [177Lu]Ludotadipep is expected to be safe at the dose of 3.7 GBq times 6 cycles planned for a phase II clinical trial with kidneys and bone marrow being the critical organs, and shows a high tumor absorbed dose.

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

A1E Induces Apoptosis via Targeting HPV E6/E7 Oncogenes and Intrinsic Pathways in Cervical Cancer Cells

  • Ham, Sun Young;Bak, Ye Sol;Kwon, Tae Ho;Kang, Jeong Woo;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yang, Young;Jung, Seung Hyun;Yoon, Do Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • A1E is an extract from traditional Asian medicinal plants that has therapeutic activities against cancers, metabolic disease, and other intractable conditions. However, its mechanism of action on cervical cancer has not been studied. In order to ascertain if A1E would have pronounced anti-cervical cancer effect, cervical cancer cells were incubated with A1E and apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blotting, Reverse-transcription polymerase chain reaction, and measurement of mitochondrial membrane potential. Expression of human papiloma virus E6 and E7 oncogenes was down-regulated in A1E-treated cervical cancer cells, while p53 and retinoblastoma protein levels were enhanced. A1E also perturbed cell cycle progression at sub-G1 and altered cell cycle regulatory factors in SiHa cervical cancer cells. A1E activated apoptotic intrinsic pathway markers such as caspase-9, caspase-3 and poly ADP-ribose polymerase, and down-regulated expression of Bcl-2 and Bcl-xl. A1E induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited phosphatidylinositol 3-kinase (PI3K)/Akt, key factors involved in cell survival signaling. Taken all these results, A1E induced apoptosis via activation of the intrinsic pathway and inhibition of the PI3K/Akt survival-signaling pathway in SiHa cervical cancer cells. In conclusion, A1E exerts anti-proliferative action growth inhibition on cervical cancer cells through apoptosis which demonstrates its anti-cervical cancer properties.