Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.1.21

Anticancer Activity of Chloroform Fraction of Methanol Extract of Sparassis crispa in Human Cervical Cancer Stem Cells  

Han, Jang Mi (Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University)
Kim, Sung Min (Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University)
Kim, Hye Young (Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University)
Baek, Seung Bae (Able)
Jung, Hye Jin (Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.1, 2022 , pp. 21-28 More about this Journal
Abstract
Sparassis crispa is an edible mushroom that has been widely utilized in Japan and Korea. It has various biological activities, such as anti-hypertensive, anti-allergic, anti-diabetic, anti-inflammatory, anti-angiogenic, and anti-cancer effects. In this study, we investigated the anticancer activity and underlying molecular mechanism of chloroform fraction of methanol extract of S. crispa (CESP) against cervical cancer stem cells (CSCs), which contribute to tumor initiation, recurrence, and resistance to therapy of human cervical cancer. CESP effectively inhibited the proliferation, tumorsphere formation, and migration of HeLa-derived cervical CSCs by promoting apoptosis. In addition, CESP significantly downregulated the expression of key cancer stemness markers, including integrin α6, CD133, CD44, ALDH1A1, Nanog, Oct-4, and Sox-2, in HeLa-derived cervical CSCs. Furthermore, CESP remarkably suppressed in vivo tumor growth of HeLa-derived cervical CSCs in a chick embryo chorioallantoic membrane (CAM) model. Therefore, our findings suggest that CESP has potential as a natural medicine for the prevention and treatment of cervical cancer by targeting CSCs.
Keywords
Sparassis crispa; Chloroform fraction of methanol extract; Cervical cancer; Cancer stem cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lorusso, D., Petrelli, F., Coinu, A., Raspagliesi, F. and Barni, S. (2014) A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 133: 117-123.
2 Rich, J. N. (2016) Cancer stem cells: understanding tumor hierarchy and heterogeneity. Med. (Baltimore) 95(1 Suppl 1): S2-S7.   DOI
3 Huang, R. and Rofstad, E. K. (2017) Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8: 35351-35367.   DOI
4 Hoppe-Seyler, K., Bossler, F., Braun, J. A., Herrmann, A. L. and Hoppe-Seyler, F. (2018) The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 26: 158-168.   DOI
5 Newman, D. J. and Cragg, G. M. (2016) Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79: 629-661.   DOI
6 Choi, Y. S., Han, J. M., Kang, Y. J. and Jung, H. J. (2021) Chloroform extract of Citrus unshiu Markovich peel induces apoptosis and inhibits stemness in HeLa human cervical cancer cells. Mol. Med. Rep. 23: 86.
7 Kim, S. M., Han, J. M., Le, T. T., Sohng, J. K. and Jung, H. J. (2020) Anticancer and antiangiogenic activities of novel α-mangostin glycosides in human hepatocellular carcinoma cells via downregulation of c-Met and HIF-1α. Int. J. Mol. Sci. 21: 4043.   DOI
8 Hong, K. B., Hong, S. Y., Joung, E. Y., Kim, B. H., Bae, S. H., Park, Y. and Suh, H. J. (2015) Hypocholesterolemic effects of the cauliflower culinary-medicinal mushroom, Sparassis crispa (higher basidiomycetes), in diet-induced hypercholesterolemic rats. Int. J. Med. Mushrooms 17: 965-975.   DOI
9 Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., Park, J. K. and Fine, H. A. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391-403.   DOI
10 Mendoza-Almanza, G., Ortiz-Sanchez, E., Rocha-Zavaleta, L., Rivas-Santiago, C., Esparza-Ibarra, E. and Olmos, J. (2019) Cervical cancer stem cells and other leading factors associated with cervical cancer development. Oncol. Lett. 18: 3423-3432.
11 Ohno, N., Miura, N. N., Nakajima, M. and Yadomae, T. (2000) Antitumor 1,3-β-glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23: 866-872.   DOI
12 Han, J. M., Sohng, J. K., Lee, W. H., Oh, T. J. and Jung, H. J. (2021) Identification of cyclophilin A as a potential anticancer target of novel nargenicin A1 analog in AGS gastric cancer cells. Int. J. Mol. Sci. 22: 2473.   DOI
13 Shin, H. J., Han, J. M., Choi, Y. S. and Jung, H. J. (2020) Pterostilbene suppresses both cancer cells and cancer stemlike cells in cervical cancer with superior bioavailability to resveratrol. Molecules 25: 228.   DOI
14 Shin, H. J., Lee, S. and Jung, H. J. (2019) A curcumin derivative hydrazinobenzoylcurcumin suppresses stem-like features of glioblastoma cells by targeting Ca2+/calmodulin-dependent protein kinase II. .J Cell. Biochem. 120: 6741-6752.   DOI
15 Han, J. M., Lee, E. K., Gong, S. Y., Sohng, J. K., Kang, Y. J. and Jung, H. J. (2019) Sparassis crispa exerts anti-inflammatory activity via suppression of TLR-mediated NF-kappaB and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. J. Ethnopharmacol. 231: 10-18.   DOI
16 Han, J. M., Gong, S. Y., Sohng, J. K., Kang, Y. J. and Jung, H. J. (2019) Antiangiogenic activity of non-aqueous fraction from Sparassis crispa extract in human umbilical vein endothelial cells. Korean J. Food Sci. Technol. 51: 141-146.   DOI
17 Kimura, T. (2013) Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BioMed. Res. Int. 2013: 982317.   DOI
18 Kwon, A. H., Qiu, Z., Hashimoto, M., Yamamoto, K. and Kimura, T. (2009) Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am. J. Surg. 197: 503-509.   DOI
19 Andersson, S., Rylander, E., Larsson, B., Strand, A., Silfversvard, C. and Wilander, E. (2001) The role of human papillomavirus in cervical adenocarcinoma carcinogenesis. Eur. J. Cancer 37: 246-250.   DOI
20 Nowacka-Jechalke, N., Nowak, R., Lemieszek, M. K., Rzeski, W., Gawlik-Dziki, U., Szpakowska, N. and Kaczynski, Z. (2021) Promising potential of crude polysaccharides from Sparassis crispa against colon cancer: an in vitro study. Nutrients 13: 161.   DOI
21 Valent, P., Bonnet, D., De Maria, R., Lapidot, T., Copland, M., Melo, J. V., Chomienne, C., Ishikawa, F., Schuringa, J. J., Stassi, G., Huntly, B., Herrmann, H., Soulier, J., Roesch, A., Schuurhuis, G. J., Wohrer, S., Arock, M., Zuber, J., Cerny-Reiterer, S., Johnsen, H. E., Andreeff, M. and Eaves, C. (2012) Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer 12: 767-775.   DOI
22 Lichota, A. and Gwozdzinski, K. (2018) Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 19: 3533.   DOI
23 Choi, M. H., Han, H. K., Lee, Y. J., Jo, H. G. and Shin, H. J. (2014) In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines. J. mushrooms 12: 304-310.   DOI
24 Organista-Nava, J., Gomez-Gomez, Y., Garibay-Cerdenares, O. L., Leyva-Vazquez, M. A. and Illades-Aguiar, B. (2019) Cervical cancer stem cell-associated genes: Prognostic implications in cervical cancer (Review). Oncol. Lett. 18: 7-14.
25 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71: 209-249.   DOI
26 Liontos, M., Kyriazoglou, A., Dimitriadis, I., Dimopoulos, M. A. and Bamias, A. (2019) Systemic therapy in cervical cancer: 30 years in review. Crit. Rev. Oncol. Hematol. 137: 9-17.   DOI
27 Han, J. M., Kim, H. L. and Jung, H. J. (2021) Ampelopsin inhibits cell proliferation and induces apoptosis in HL60 and K562 leukemia cells by downregulating AKT and NF-κB signaling pathways. Int. J. Mol. Sci. 22: 4265.   DOI
28 Kim, Y. J., Yuk, N., Shin, H. J. and Jung, H. J. (2021) The natural pigment violacein potentially suppresses the proliferation and stemness of hepatocellular carcinoma cells in vitro. Int. J. Mol. Sci. 22: 10731.   DOI
29 Chaichian, S., Moazzami, B., Sadoughi, F., Haddad Kashani, H., Zaroudi, M. and Asemi, Z. (2020) Functional activities of beta-glucans in the prevention or treatment of cervical cancer. J. Ovarian Res. 13: 24.   DOI