• Title/Summary/Keyword: membrane performances

Search Result 191, Processing Time 0.028 seconds

Operating Conditions of Proton Exchange Membrane Fuel Cell Using Grafoil$^{TM}$ as Bipolar Plates (그라포일 분리판을 이용한 고분자 전해질 연료전지의 운전 조건에 관한 연구)

  • Park, Taehyun;Chang, Ikwhang;Lee, Yoon Ho;Lee, Juhyung;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.85.1-85.1
    • /
    • 2011
  • In this study, Grafoil$^{TM}$ which has comparable electric resistance and chemical stability but is flexible, fragile, and cheap material was adopted as bipolar plates for proton exchange membrane fuel cell(PEMFC) having only one straight line flow channel. Because of its flexibility, pressurizations of cell with various pressures showed different operating characteristics compared to ordinary graphite-used PEMFC. While performances of both cells decreased as these were pressurized, investigation of ohmic and faradaic resistance by electrochemical impedance measurement indicated different tendency of change. Ohmic resistance of graphite-used cell increased with increasing pressure, which is reversed in Grafoil$^{TM}$-used cell. It is speculated that effective chemical reaction area is decreased with increasing pressure in case of graphite-used one, but because of flexible property of Grafoil$^{TM}$, gas diffusion layer in Grafoil$^{TM}$-used cell was well-activated. Different rate of change of faradaic resistances in both cells support this supposition. However, although optimum point of pressurization is found, it is required to investigate other operating conditions because of low performance compared to graphite-used cell.

  • PDF

Experimental Study on the Characteristics of Heat Exchanger of 1 kW PEMFC System for UAV (무인항공기용 고분자전해질형 연료전지 시스템의 열교환기 성능 특성 연구)

  • Kang, Sang-Gyu;Kim, Byung-Jun;Kim, Han-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.819-826
    • /
    • 2011
  • The proton exchange membrane fuel cell (PEMFC) is regarded as the most promising alternative power sources for unmanned aerial vehicle (UAV) due to its high energy density and silent operation. Since there are many load changes during UAV flight, thermal management is one of the important factor for the performance of PEMFC. In order to reduce the UAV weight for the stable operation of UAV, thermal management system (TMS) studied in this work does not use the fan but use the air flowing into UAV by UAV flight. In order to develop the passive type heat exchanger (HEX) for 1kW PEMFC, four types of HEXs are fabricated and their cooling performances are compared. The parametric study on the cooling performance of HEXs has performed with the variation of operating parameters such as mass flow rates and inlet temperature of air and coolant. Type 4 has the best performance in every case. This study can be helpful to achieve the optimal design of HEX for PEMFC powered UAV.

Improved Degenerated Shell Finite Elements for Analysis of Shell Structures (쉘구조 해석을 위한 개선된 Degenerated 쉘유한요소)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • The development of an improved degenerated shell element is presented in this paper. In the formulation of this element, an enhanced interpolation of transverse shear strains in the natural coordinate system is used to overcome the shear locking problem ; the reduced integration technique in in-plane strains is applied to avoid the membrane locking behavior ; and selective addition of the nonconforming displacement modes improve the element performances. This element is free of serious locking problems and undesirable compatible or commutable spurious kinematic deformation modes, and passes the patch tests. To illustrate the performance of this improved degenerated shell element, some benchmark problems are presented. Numerical results indicate that the new element shows fast convergence and reliable solutions.

  • PDF

Numerical Simulation on Cooling Plates in a Fuel Cell (연료전지 냉각판의 냉각 특성에 대한 수치해석적 연구)

  • Kim, Yoon-Ho;Lee, Yong-Taek;Lee, Kyu-Jung;Kim, Yong-Chan;Choi, Jong-Min;Ko, Jang-Myoun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.86-93
    • /
    • 2007
  • The PEM (polymer electrolyte membrane) fuel cell is one of the promising fuel cell systems as a new small power generating device for automobiles and buildings. The optimal design of cooling plates installed between MEA (membrane electrode assembly) is very important to achieve high performance and reliability of the PEMFC because it is very sensitive to temperature variations. In this study, six types of cooling plate models for the PEMFC including basic serpentine and parallel shapes were designed and their cooling performances were analyzed by using three-dimensional fluid dynamics with commercial software. The model 3 designed by revising the basic serpentine model represented the best cooling performance among them in the aspect of uniformity of temperature distribution and thermal reliability, The serpentine models showed higher pressure drop than the parallel models due to a higher flow rate.

Analysis of Physical Performance, Hygiene and Safety of Silicone-Laminated Stretch Material (실리콘이 라미네이팅된 신축성 소재의 위생 및 안전성과 역학적 성능)

  • Kwon, Myoung-Sook;Jung, Gi-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.77-84
    • /
    • 2007
  • The purpose of this study was to investigate and to compare the performances of silicone laminated materials sold for swimming cap in market, to get the basic data for product development. We selected 4 specimens and tested their air permeability, waterproofness and breathability. We also tested the physical and mechanical properties of the specimens using KES system. Silicone-laminated material was not bursted on high hydraulic pressure since silicone membrane gave waterproofness while PU/Polyester substrate gave elasticity. It didn't have air permeability and breathability at all. Any toxic materials such as Formaldehyde, Deldrin, PCP, Amin, TDBPP were not detected in silicone-laminated material and other materials. Silicone-laminated material had higher stretchability with the low force but it had lower elastic recovery and shape stability comparing to PU laminated material. It had lower flexibility than PU laminated material. It had lower unrecoverable amount in shearing direction. Friction coefficient was higher in silicone-laminated material than PU laminated material due to its surface stickiness. It was compressed easily and its compression resiliency was higher with compared to PU laminated material.

Factors Influencing the Removal of Water Soluble Solids from Soybean Curd Whey by Reverse Osmosis (역삼투법을 이용한 두부순물의 가용성 물질 제거에 관한 연구)

  • Kim, Dong-Man;Baek, Hyung-Hee;Jin, Jae-Soon;Lee, Sei-Eun;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.306-310
    • /
    • 1992
  • The effects of membrane type, temperature and pH on the permeate flux and removal of soluble solids from soybean curd whey by reverse osmosis were studied at recommended pressures for optimum performance of the membranes. The fluxes obtained with HR 95 and HR 98 membranes at 60 bar were not lower than that with CA 930 membrane at 20 bar. Soluble solid content in the permeate increased to 1.5 Brix after 90 min by CA 930 membrane, as opposed to 0 Brix with the HR 95 and HR 98 membranes. Permeate flux was increased by 28.4% as operation temperature increased from $30^{\circ}C$ to $50^{\circ}C$. COD of the whey was rejected up to 80.5%, 99.7% and 99.5% by using the membranes of CA 930, HR 95 and HR 98, respectively. pH adjustment of the whey resulted in decreasing membrane performance. But the rejection rate of COD in permeate with HR 98 membrane was slightly increased to 99.9% when the pH was adjusted to 7.0.

  • PDF

Preparation of Porous Separators for Zn Air Batteries through Phase Inversions of Polyetherimide-PVP Solutions (Polyetherimide-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.231-239
    • /
    • 2014
  • Polyetherimide (PEI) membranes for separators in Zn air batteries were prepared via phase inversion process from casting solution composed of PEI, n-methylpyrolidone (NMP), and polyvinylpurrolidone (PVP). Furthermore, Zn air batteries were fabricated with the separators. The effects of PEI content and PVP addition in the casting solution on the morphology, mechanical strength, ionic conductivity were investigated through SEM, stress-strain test and ac impedance test. The elelctrochemical performances of the batteries were evaluated through galvanostatic discharge analysis. The mechanical strength of the membrane increased with increasing PEI composition in the casting solution. Little effect of PVP addition into the solution on the mechanical strength of the membrane was investigated. The ionic conductivity value decreased with increasing PEI composition in the solution. With addition of PVP, ionic conductivity of membrane increased until 10 wt% to show the maximum value of 0.1 S/cm. In the higher range of PVP addition over 10%, the ionic conductivity decreased with increasing PVP addition. Ionic conductivity of separator strongly affected the capacity of Zn air battery, and the battery assembled with the separator which showed high ionic conductivity showed high capacity.

Capping Intercrystalline Defects of Polycrystalline UiO-66 Membranes by Polydimethylsiloxane Coating (폴리다이메틸실록산 코팅을 통한 다결정성 UiO-66 분리막의 비선택적 결정립계 결함 캡핑)

  • Ik Ji Kim;Hyuk Taek Kwon
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2023
  • In general, the presence of non-selective intercrystalline (grain boundary) defects in polycrystalline metal-organic framework (MOF) or zeolite membranes, which are known to be ca. 1 nm in size, causes lower membrane performance (selectivity) than the intrinsically expected. In this study we show that applying a thin polymeric coating of polydimethylsiloxane (PDMS) on a polycrystalline MOF membrane is effective to cap the non-selective intercrystalline defects and therefore improve membrane performance. To demonstrate the concept, first, polycrystalline UiO-66, one of Zr-based MOFs, membranes were prepared by an in-situ solvothermal growth. By controlling membrane growth condition with respect to growth temperature, we were able to obtain polycrystalline UiO-66 membranes at 150 ℃ with intercrystalline defects of which the quantity is not significant, so it can be plugged by the suggested PDMS deposition. Second, their performances were compared before and after the PDMS deposition. As expected, the PDMS deposition ended up with a noticeable increase in CO2/N2 ideal selectivity from 6 to 14, indicating successful intercrystalline defect plugging. However, the enhancement in CO2/N2 selectivity was accompanied by a significant reduction in CO2 permeance from 5700 to 33 GPU because the PDMS deposition not only plugs defects but also forms a continuous coating on membrane surface, adding an additional transport resistance.

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells (Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도)

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Evaluation of Seawater Reverse Osmosis Desalination System with UF and Disk Filter as Pre-Treatment (UF와 디스크필터를 전처리시설로 이용한 역삼투압해수담수설비의 평가)

  • Yang, Keun-Mo;Lim, Dong-Hoon;Kim, Joon Ha;Jung, Hyung-Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • In the present study, sea water reverse osmosis desalination system was composed with an ultra-filtration membrane as a pre-treatment. Sea water was induced into the pre-treatment composed with an auto-screen filter and an ultra-filtration membrane. It was proved that the permeate of the pre-treatment was adequate for reverse osmosis desalination system by measuring the $SDI_{15}$ and the turbidity. Feed salinities was changed by mixing the brine and the permeate. Inlet salinities effected the performances of sea water reverse osmosis desalination system in a large amount such as the salt rejection, the recovery ratio, the pressure, the product salinity. Energy consumptions per the ton of the product were almost linearly increased with the inlet salinities.