• 제목/요약/키워드: membrane performances

검색결과 190건 처리시간 0.03초

Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)

  • Visvanathan, Chettiyappan;Abeynayaka, Amila
    • Membrane and Water Treatment
    • /
    • 제3권1호
    • /
    • pp.1-23
    • /
    • 2012
  • The coupling of anaerobic biological process and membrane separation could provide excellent suspended solids removal and better biomass retention for wastewater treatment. This coupling improves the biological treatment process while allowing for the recovery of energy through biogas. This review gives a basic description of the anaerobic wastewater treatment process, summarizes the state of the art of anaerobic membrane bioreactors (AnMBRs), and describes the current research trends and needs for the development of AnMBRs. The research interest on AnMBR has grown over the conventional anaerobic processes such as upflow anaerobic sludge blanket (UASB). Studies on AnMBRs have developed different reactor configurations to enhance performances. The AnMBR performances have achieved comparable status to other high rate anaerobic reactors. AnMBR is highly suitable for application with thermophilic anaerobic process to enhance performances. Studies indicate that the applications of AnMBR are not only limited to the high strength industrial wastewater treatment, but also for the municipal wastewater treatment. In recent years, there is a significant progress in the membrane fouling studies, which is a major concern in AnMBR application.

Synthesis and Characterization of Copoly(amide-imide) Derivatives and Ultrafiltration Membrane Performances II - Permeation Properties of Copoly(amide-imide)s Ultrafiltration Membranes -

  • Jeon, Jong- young;Kim, Jong-hp
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.24-31
    • /
    • 2001
  • Ultrafiltration membranes base on copoly(amide-imide) derivatives were prepared by the phase inversion method and the factors determining the permeation characteristics of membrane were investigated. The permeation behavior was observed by the relative ratio of permeate flux (J$\_$t/)/pure water flux (J$\_$o/). The characteristics through membrane were measured using aqueous solution of poly(ethyleneglycol) (MW 2.0$\times$10$\^$4/) over a temperature range of 10∼90$\^{C}$. With increasing the operating temperature, the relative ratio of flux became high. All the membranes had good chemical stability. Copoly(amide-imide) membranes having various Permeation properties could be obtained. Further, it was proved that the membrane performances could be determined from the preparation conditions as well as various operating conditions.

  • PDF

비가압식 막 공정을 통한 정삼투막 성능 평가 (Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System)

  • 김봉철;부찬희;이상엽;홍승관
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.

The Effect of ZnCl$_2$ on Polysulfone Membrane

  • Kim, Sue-Ryeon;Lee, Kew-Ho;Jhon, Mu-Shik
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1993년도 추계 총회 및 학술발표회
    • /
    • pp.34-35
    • /
    • 1993
  • The study was undertaken to investigate the effects of ZnCl$_2$ in polysulfone(PSf)/N-methylpyrrolidone(NMP) on the structure and performance of its membrane. The effects of additives on the performances of membranes have been studied. It has been shown that some low molecular weight additives in polysulfone(PSf) casting solutions have effects on the performances of membranes cast from these solutions. It had been reported that ZnCl$_2$, as the additives-in PSf casting solution, decreases water permeability and increases the rejection rate of its membrane.

  • PDF

Application of response surface methodology in pes/speek blend NF membrane for dyeing solution treatment

  • Lau, W.J.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.49-60
    • /
    • 2010
  • In this study, response surface methodology (RSM) was performed in NF membrane process to evaluate the separation efficiency of membrane in the removal of salt and reactive dye by varying different variables such as pressure, temperature, pH, dye concentration and salt concentration. The significant level of both the main effects and the interaction were observed by analysis of variance (ANOVA) approach. Based on the statistical analysis, the results have provided valuable information on the relationship between these variables and the performances of membrane. The rejection of salt was found to be greatly influenced by pressure, pH and salt concentration whereas the dye rejection was relatively constant in between 96.22 and 99.43% regardless of the changes in the variables. The water flux on the other hand was found to be affected by the pressure and salt concentration. It is also found that the model predictions were in good agreement with the experimental data, indicating the validity of these models in predicting membrane performances prior to the real filtration process.

저 레이놀즈 수 유동장에서의 유연 익형에 대한 연구 (Study on Flexible Airfoil in Low Reynolds Number Flow Field)

  • 권기범
    • 한국항공우주학회지
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2003
  • 본 연구에서는 저 레이놀즈 수 유동장에서 유연 익형의 공탄성적 거동과 공기 역학적 성능이 평가되었다. 유연 익형은 비정상 유동장에서 저 레이놀즈 수 익형으로 흔히 사용되는 CLARK-Y 익형 윗면의 일정부분에 질량이 없는 박막을 장착하여 모델링 하였다. 박막의 거동은 공기역학적 힘과 박막의 평형 방정식에 의해 지배되며 평형 방정식의 무차원화로부터 유동과 박막간의 상호작용을 나타내는 무차원 변수가 도출되며 이 무처원 변수가 박막의 거동에 큰 영향을 미친다. 박막의 분포를 익형 윗면의 지정된 지점에서부터 뒷전까지 분포시키되 지정된 박막 분포의 시작점을 변화시켜가며 각 박막 분포에서 박막의 공탄성적 거동을 지배하는 무차원 변수에 대해 공기역학적 성능의 최적화를 수행하였다. 그 결과 박막 분포의 시작점이 뒷전으로 이동할수록 무차원 변수는 거의 선형적으로 증가해야함을 알 수 있었다.

Polycarbonate/Metal Salt 막의 산소분리특성에 미치는 비용매와 금속염 농도의 영향 (Effect of Nonsolvent and Metal Salt Concentration on Oxygen Separation Performances of Polycarbonate/Metal Salt Membrane)

  • 서상훈;이우태
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.61-69
    • /
    • 2001
  • Polycarbonate(PC) membranes for oxygen enrichment from air were prepared by the wet phase inversion method. In order to improve oxygen separation performances of the PC membrane, the effect of the added ethanol(nonsolvent) and $CuCl_2$(metal salt) concentration in the casting solution on morphology, oxygen permeability ami $O_2/N_2$ separation factor of the membrane was studied. In addition, tensile strength and elongation at break of the membrane were investigated. An asymmetric membrane with a dense top layer and a porous sublayer was obtained. The thickness of the dense top layer decreased with increasing amount of nonsolvent additive. Compared with pure PC membrane without additive(metal salt), the oxygen permeability and $O_2/N_2$ separation factor of the $PC/CuCl_2$ membrane are significantly improved. The oxygen permeability and $O_2/N_2$ separation factor is $5.25{\times}10^{-9}cm^3(STP){\cdot}cm/cm^2{\cdot}sec{\cdot}cmHg$ and 4.5, respectively. This improvement might be due to good interaction between metal salt and oxygen.

  • PDF