• Title/Summary/Keyword: membrane orientation

Search Result 55, Processing Time 0.02 seconds

Preparation and Pervaporative Alcohol Dehydration of Crystallographically b/c-axis Oriented Mordenite Zeolite Membranes (결정학적으로 b/c-축 방향으로 배향된 모데나이트 제올라이트 분리막의 제조 및 투과증발 알코올 탈수 거동)

  • Kim, Young-Mu;Lee, Du-Hyoung;Kim, Min-Zy;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.340-350
    • /
    • 2018
  • In the present study, crystallographically b- and c-axis oriented mordenite zeolite membranes were prepared and their pervaporative ethanol dehydration was investigated. The seed layer with a high coverage grew to be c-axis oriented dense layer, while the seed layer with a low coverage grew to be b-axis oriented layer. This phenomenon could be explained by the evolutionary selection growth mechanism. The b-axis grown membrane with 8-membered rings showed a high separation factor of above 1000 and a considerable total flux of around $0.2kg/m^2h$. The c-axis grown, columnar structured membrane with 8- and 12-membered rings showed a low separation factor of less than 200 and a relatively high total flux of around $0.25kg/m^2h$. The high performance of b-axis grown membrane was due to the relatively small opening of 8-membered rings. Water molecules can freely permeate through the openings, but ethanol molecules, difficultly. Therefore, in the present study, we introduced a new method to control crystallographic orientation of mordenite membrane by changing seeding amount of needle-like crystals, and elucidated that b-axis oriented mordenite membrane showed better performance than c-axis grown mordenite membrane.

Membrane Penetration and Translocation of Nanoparticles

  • Sin, Dong-Ju;Hyeon, Jeong-In;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.139-151
    • /
    • 2013
  • Understanding interactions between nanoparticles and lipid bilayer membranes is of great importance due to the potential applications in bio-nanotechnology such as drug deliveries, carrying genes, and utilization of integral membrane proteins. To investigate the dynamics of nanoparticle penetration and translocation into membranes, we performed dissipative particle dynamics simulations which use simple and intuitive coarse-grained models yet effectively describe hydrodynamic interactions in cell environment. We discuss the influence of the shape of nanoparticles as well as the properties of membranes including large membrane-embedded proteins that are found to significantly affect orientation of nanoparticles within membranes and, in turn, the minimum force required to translocate nanoparticles.

  • PDF

Development of photocatalytic PVA/$TiO_2$ nanofiber membrane by electrospinning and its application for Air Filtration

  • Linh, Nguyen Thuy Ba;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.38.1-38.1
    • /
    • 2010
  • Nanofibers have a large potential in air filtration applications. In this work, we have developed a photocatalytic polyvinyl alcohol PVA/$TiO_2$ nanofibers membrane for the treatment of air filtration by using electrospinning method. PVA were electrospun into nanofibrous membranes and $TiO_2$ nanoparticles were loaded in PVA nanofibers in various contents from 10% (w/w) to 50% (w/w). The UV-Vis spectra were conducted for testing the existence of $TiO_2$ nanoparticles in PVA fibers. SEM analysis indicated that $TiO_2$ nanoparticles were loaded on the surface of PVA fibers and dispersed linearly along the fiber direction, which originated from the effect of polarization and orientation caused by high electric field. X-ray diffraction (XRD) was used to determine the crystalline of the membrane. Tensile strength was measured to evaluate the physical properties of the membrane. Therefore, our work suggested that PVA/$TiO_2$ nanofiber membrane has a potential application in air filtration area.

  • PDF

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo;Talledo, Diego A.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.351-360
    • /
    • 2017
  • This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

Home-built Solid-state NMR Probe for Membrane Protein Studies

  • Kim, Yong-Ae;Hwang, Jung-Hyun;Park, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1281-1283
    • /
    • 2003
  • Proteins in highly oriented lipid bilayer samples are useful to study membrane protein structure determination. Planar lipid bilayers aligned and supported on glass slide were prepared. These stack of glass slide with planar lipid bilayers are not well fit for commercial solid-state NMR probe with round coil. Therefore, homebuilt solid-state NMR probe was built and used for a stack of thin glass plates and RF coil is wrapping directly around the flat square sample. The overall filling factor of the coil is much better and the large surface area enhances the extent to orientation by providing uniform environments for the phospholipids and the high ratio of circumference to area reduces edge effects. $^1H\;and\;^{15}N$ double resonance probe for 400 MHz NMR (9.4T) with a flat coil (coil size: 11 mm ${\times}$ 20 mm ${\times}$ 4 mm) is constructed and tested.

Si Micromachining for MEMS-IR Sensor Application (결정의존성 식각/기판접합을 이용한 MEMS용 구조물의 제작)

  • 박홍우;주병권;박윤권;박정호;김철주;염상섭;서상회;오명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.815-819
    • /
    • 1998
  • The silicon-nirtide membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PRO($PbTiO_3$ ) layer for a IR detection was coated on the membrane and its characteristics were measured. The a attack of PTO layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer were eliminated through the method of bonding/etching of silicon wafer. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by the PTO layer were measured, too.

  • PDF

The Preferred Orientation of CdSe and CdS Thin Films on the AlOx and SiO2 Templates (AlOx와 SiO2 형판위 CdSe와 CdS 박막의 우선방위(Preferred Orientation) 특성)

  • Lee, Young-Gun;Chang, Ki-Seog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.502-506
    • /
    • 2012
  • In order to find the structural characteristics of the thin films of group II-VI semiconductor compounds compared with those of powder materials, films were made of 4 powders of ZnS, CdS, CdSe, and CdTe(Aldrich), each with 99.99 % purity. For the ZnS/CdS multi-layers, the ZnS layer was coated over the CdS layer on an $AlO_x$ membrane, which served as a protective layer within a vacuum at the average speed of 1 ${\AA}$/sec. After studying the structures of the group II-VI semiconductor thin films by using X-ray spectroscopy, we found that the ZnS, ZnS/CdS, CdS, and CdSe films were hexagonal and exhibited some degree of preferred orientation. Also, the particles of the thin films of II-VI semiconductor compounds proved to be more homogeneous in size compared to those of the powder materials. These results were further verified through scanning electron microscopy(SEM), EDX analysis, and powder and thin film X-ray diffraction.

Structure Variation of Polypropylene Hollow Fiber Membrane with Operation Parameters in Stretching Process (연신 공정 조업변수에 따른 폴리프로필렌 중공사막의 구조 변화)

  • Lee Gyu-Ho;Kim Jin-Ho;Song Ki-Gook;Kim Sung-Soo
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Hybrid process of thermally-induced phase separation and stretching was developed for the preparation of microporous polypropylene hollow fiber membranes. Precursor for stretching was prepared by using soybean oil as a diluent and benzoic acid as a nucleating agent far the sphenlite control and it was stretched far the micrporous hollow fiber membrane. The effects of stretching ratio and deformation rate for stretching process were investigated. Increase of stretching ratio resulted in the greater pore size with nonuniform size distribution. Higher deformation rate also increaser the pore size with uniform size distribution. Stretching ratio was closely related with the orientation of polymer chain and increased the mechanical strength of the fiber. Increase of deformation rate had little effects on the orientation of crystalline phase, and decreased the orientation of amorphous phase which caused the decrease of tensile strength of the fiber and broke the micro-fibrils connecting spherulites to form a circular pore shape.

Monolayer Characteristics of Bilayer Forming Phosphate Amphiphiles (이분자막 형성능을 가지는 인산형 양친매성 화합물의 단분자막 특성)

  • ;Kunitake, T.
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.89-96
    • /
    • 1995
  • The monolayer characteristics of phosphate amphiphiles with azobenzene at air/water interface were studied by the measurment of $\pi-A$ curves and absorption spectra. Immediately after being spread on the water surface, these amphiphiles having strong intermolecular hydrogen bonding interactions showed the typical absorption spectra which resulted from domain formation. But the aggregated domains could be controlled by changing the subphase conditions (adding bulky salt and rasing pH). Addition of metal ions in subphase changes the molecular orientation of monolayer. As the metal ion charge increases ($1\leq2$ < 3 < 4 valence), the absorption maximum (310nm) of the amphiphile with azobenzene shifts to a longer wavelength (350nm) which means that the orientation of the amphiphile is tilted. These results suggest that the molecular orientation, and furthermore the aggregation state of monolayer can be possibly controlled by the interaction of metal ions with different charge types.

  • PDF

Magnetic Orientations of Bull Sperm Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kumianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper describes the magnetic orientation of the intact and demembranated bull sperm treated by DTT or heparin in a 5,400 G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4{^{\circ}C}$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the sperm head area at 1, 3, and 6 days. After measuring the area, each sperm sample was exposed to a 5,400 G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the decondensation of bull sperm nuclei was not induced by the heparin treatment, however, incomplete decondensation was induced by the DTT treatment. During the magnetic orientation, bull sperms treated by DTT or heparin had low percentages of long axis perpendicular to the magnetic lines of force. However, different aspects were obtained for long axis perpendicular orientations following treatment of DTT or heparin. Through the DTT treatment, the decline of long axis perpendicularly oriented percentages was due to the increase of long axis parallel orientation with the head of the flat plane perpendicular to the magnetic lines of force, whereas, using the heparin treatment, the decline of long axis perpendicular orientation was due to the increment of long axis parallel orientation with the head of the flat plane parallel to the magnetic lines of force. Also, percentages of the head of the flat plane perpendicular were decreased by the heparin treatment. These findings suggest that maintaining the structure of protamine in the chromatin is necessary for the sperm head to orient with its flat plane perpendicular, and maintaining the disulfide bond in the chromatin is necessary for the long axis of sperm to orient perpendicularly.