• Title/Summary/Keyword: membrane fluidity

Search Result 109, Processing Time 0.029 seconds

Modulation of the Aging Process by Food Restriction (칼로리 제한에 노화과정의 조절)

  • 최진호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 1991
  • Aging is the progressive accumulation of changes with time associated with responsible for the ever-increasing susceptibility to disease and death which accompanies advancing age. Lipid peroxides easily produced in the membrane system by the chain reaction of free radicals which occurred from various environmental factors. The amount of lipid peroxides produced in biological system increased with aging process, and lipid peroxidation damages involved in aging process and pathological disorders. Although lipid peroxides have such deleterious effects on the organisms, there are numerous substances and mechanisms which prevent the reaction of peroxide formation and protect the subject from its toxicity. This review provides an overview of how does lipid peroxidation of unsaturated lipids take place by free radical, and what is the intervention of lipid peroxides in pathogenesis of some human diseases, and also how does food restriction influences the aging process and various pathological disorders. The major focus of this paper is to review the evidence indicating that food restriction retards the aging process, and possible mechanisms of its actions. Therefore, it discussed the effects of age and food restriction on life-span, membrane yield, lipid peroxidation, fatty acid composition and peroxidizability, cholesterol and triglyceride levels, prostaglasndin and thromboxane synthesis, which may be concerned with blood flow, membrane fluidity, homeostasis and glomerular filtration rate in living body.

  • PDF

A Study on the Absorption Mechanism of Drugs through Biomembranes

  • Lee, Chi-Ho;Kim, Heun-Jo
    • Archives of Pharmacal Research
    • /
    • v.17 no.3
    • /
    • pp.182-189
    • /
    • 1994
  • The effect of lipophilicity on the mechanisms of drug absorption through biomembranes was investigated empolying HPLC system and the fluorescence technique. Human erythrocyte ghost membranes were used as a model biomembrane. A series of four parabens (methyl, ethyl, rpopyl, and butyl) and p-hydroxybenzoic acid were used as the model drugs for lipophilicities and their partition coefficients were measured in Sorensen's phosphate buffer solution (pH 5)/octanol system. Absorption amount of parabens through erythrocyte ghost membranes increased with an increase of lipophilicity resulted from the addition of methylene group to the n-alkyl chain of parabens. And the effect of parabens on the fluidity of ghost membrane also increased with an increase of their lipophilicities.

  • PDF

pH Stress Alters Cytoplasmic Membrane Fluidity and atpB Gene Expression in Streptococcus mutans (pH stress가 Streptococcus mutans의 형질막 유동성 및 atpB 유전자 발현에 미치는 영향)

  • Cho, Chul Min;Jung, Seung Il;Kim, Myung Sup;Lee, Sae A;Kang, Jung Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Streptococcus mutans (S. mutans), which plays a major role in the etiology of human dental caries, is able to tolerate exposure to acid shock in addition to its acidogenicity. We investigated the effects of pH stress on membrane fluidity, activities and expression levels of F-ATPase, and proton permeability in S. mutans. Using 1,6-diphenyl-1,3,5-hexatriene, we observed membrane ordering at pH 4.8 and pH 8.8. The ordering effects were larger at pH 4.8 in cytoplasmic membranes isolated from S. mutans (CMSM). Increasing pH resulted in a decrease in the activities and expression levels of F-ATPase. The proton permeability was decreased at both acidic and alkaline pHs, and the lowest permeability was observed at pH 4.8. The lower permeability at pH 8.8 than pH 6.8 is likely to be caused by the decreased proton influx due to the decreased CMSM fluidity. In addition, it seems to be evident that extremely low permeability at pH 4.8 was caused by the decreased proton influx due to the decreased CMSM fluidity as well as the increased proton efflux due to the increased activity and expression level of F-ATPase. It is likely that CMSM fluidity and F-ATPase activity are two major key factors that determine proton permeability in S. mutans. We suggest that CMSM fluidity plays an important role in the determination of proton permeability, which sheds light on the possibility of using nonspecific membrane fluidizers, e.g., ethanol, for anti-caries purposes.

Effects of Chrysanthemum coronarium L. on the Thermotropic Behavior of DPPC Liposomal Membrane

  • Bae, Song-Ja;Noh, Ok-Jeong;Roh, Sung-Bae
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • To understand the effects of the fraction from Chrysanthemum coronarium L. (CC), we prepared five different types of samples, denoted here as CCMM, CCMH, CCMEA, CCMB and CCMA. We studied the effects of these samples on the phase transition of liposomal membranes by high-sensitivity differential scanning calorimetry (nano-DSC). We used dipalmitoylphosphatidylcholine (DPPC) bilayers which make most stable liposomes among the other phosphatidylcholines. When the samples were added to the bilayers, the phase transition temperatures of DPPC liposomes incorporated with CCMH and CCMEA were decreased by 1.5 and 2^{\circ}C$, while the other three fractions showed less tendencies. The CCMH and CCMEA fractions markedly affected the thermotropic properties of DPPC liposomes, broadened and shifted the thermograms of DSC. It also significantly reduced the size of cooperative unit of the transition. In all cases, there was no change in enthalpy of transition within the concentration range of the CC fractions studied. We concluded that the incorporation of the CCMH and CCMEA into DPPC liposomes was preferentially located in the hydrophobic core of DPPC bilayers compared to the other three fractions CCMM, CCMB and CCMA. These results suggest that certain substances in CCMH and CCMEA fractions might have biologically significant effects on the fluidity of biological membrane.

  • PDF

Effect of Menhaden Oil Feeding on Protein Kinase C Activity and Membrane Phospholipid Profiles in Mouse Epidermal Cells (지방질원으로서 어유가 백서 상피세포의 인지질 조성 및 Protein Kinase C 활성에 미치는 영향)

  • Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.27 no.5
    • /
    • pp.419-428
    • /
    • 1994
  • To investigate the effect of dietary menhaden oil on protein kinase C (PKC) activity and membrane phospholipid composition in epidermal cells, female BALB/C mice were fed either menhaden oil or corn oil with two different levels(5% or 20%) for 6 weeks. Membrane phosphatidycholine(PC) was decreased in menhaden oil-fed group. Eicosapentaenoic acid(EPA) and Docosahexaenoic acid(DHA) were only presented in the acyl chain of membrane phospholipid of menhaden oil-fed mice, so that membrane fluidity of the group could be different from the other group. Both cytosolic and membrane-associated PKC activity in epidermal cells were decreased in menhaden oil-fed mice when compare with corn oil-fed mice. Furthermore, rate of PKC transfer from cytosol to membrane in menhaden oil-fed group was not as fast as in corn oil-fed group. Based on these observations, dietary menhaden oil might act differently from other dietary fat in carcinogenesis.

  • PDF

The Effect of Ginseng Extracts on the Photooxidation of Liposome II. The effecton the changes of fluidity and lysis (Liposome의 광산화반응에 미치는 인삼추출물의 영향 제2보 유동성 및 Lysis에 미치는 영향)

  • 백태홍;이준홍
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.385-390
    • /
    • 1990
  • To investigate the effect of ginseng extracts on the changes of flllidity and lysis of liposome reverse phase evaporation vesicle (REV) was employed as model membrane and methylene blue was used as photosensitizer. Fluoresence polarization (P vaule) that represented fluidity of liposome was increased by photooxidation. All of the ginseng saponin inhibited the increasing rate of P value; the order of effect was ginseng water extract>biol saponin>triol saponin>crude saponin. In trapped G-6-P% measurement for lysis of liposome, ginseng water extract and crude saponin promoted the lysis of liposome. Therefore, we thought that ginseng extracts acted as both antioxidant and detergent.

  • PDF

The Effects of Godulbaegi Extracts on the Fluidity of Phospholipid Liposomes by DSC (DPPC Liposome에 미치는 고들빼기 추출물의 DSC 연구)

  • 배송자;김남홍;노승배;정복미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.518-524
    • /
    • 1998
  • Liposomes have been widely employed as biomembrane-mimetic system and drug-delivery system. In these applications, the low stability of liposomes has been the most serious problem. They have relatively short half-lives and easily lysed through interactions with biological components. This study was performed to investigate the effects of godulbaegi extracts on the fludity of phospholipid liposomes. We used dipalmitoyl phosphatidylcholine(DPPC) liposomes which make most stable liposomes among the other phosphatidylcholines. The thermograms of the DPPC liposomal bilayers incorporated with the hexane extract of godulbaegi(Ixeris sonchifolia H.) were obtained, and the enthalpy changes and the sizes of cooperative unit of the transition were calculated. The incorporation of the Ixeris sonchifolia H. into the liposomal bilayers effectively reduced the transition temperature at which the transition from gel state to liquid-crystalline state occurs, broadened the thermogram peaks, and reduced the ratio of van't Hoff to calorimetric enthalpies. These results indicate indicate that the godulbaegi extracts (Ixeris sonchifolia H.) have significant effects on the fluidity of biological membrance.

  • PDF

Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality

  • Wang, Dingkang;Zhang, Min;Huang, Jun;Zhou, Rongqing;Jin, Yao;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.

Effects of Barbiturates on Transbilayer Fluidity Domains of Phospholipid Model Membrane Monolayers (Barbiturates가 소의 대뇌피질 Synaptosomal Plasma Membrane Vesicles로 부터 추출 제제한 총지질 및 총인지질 인공세포막에 형성된 비대칭적 유동성에 미치는 비대칭적 영향)

  • Yun, Il;Kang, Jung-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.103-114
    • /
    • 1992
  • Selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups was utilized to examine the transbilayer fluidity domains of the model membranes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from synaptosomal plasma membrane vesicles. At $37^{\circ}C$, all anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) values of DPH in the SPMVTL were larger than those in SPMVPL. The anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.025, 0.033, and 0.070, respectively, greater than calculated for the outer monolayer of SPMVTL. In SPMVPL, the anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.014, 0.018, and 0.047, respectively, greater than calculated for the outer monolayer. Selective quenching of DPH by trinitrophenyl groups was also utilized to examine the effects of barbiturates on the transbilayer fluidity domains of SPMVTL and SPMVPL. Barbiturates did not affect the anisotropy of DPH in the transbilayer domains of SPMVTL. In contrast, barbiturates increased the fluorescence anisotropy, limiting anisotropy, and order parameter of DPH in the SPMVPL in a dose-dependent manner. Barbiturates showed a greater ordering effect on the outer monolayer as compared to the inner monolayer of SPMVPL. Hence, it has been demonstrated for the first time that the Sheetz-Singer hypothesis (1974) may be valid for phospholipid model membranes.

  • PDF